Fish Habitat Decision Support Tool

ACFHP, EBTJV, NALCC working with Downstream Strategies

What is it and why?

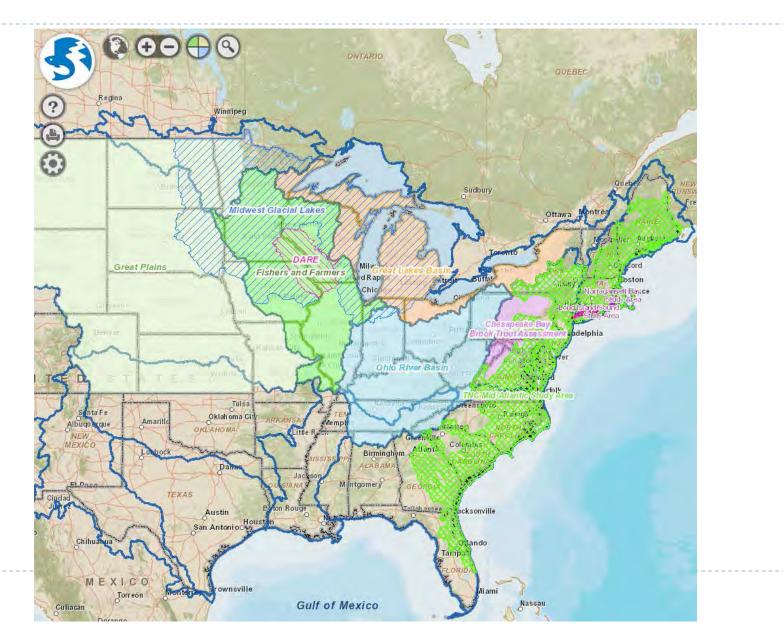
- ACFHP took their priority of developing a habitat assessment to the NALCC (North Atlantic Landscape Conservation Cooperative)
 - Determine priority areas for fish habitat restoration and protection
- NALCC grouped this priority together with a EBTJV request
 - funding ~\$280,000
- NALCC solicited proposals
- Downstream Strategies was chosen to do the work
- Pilot projects: Winter Flounder Habitat assessment in Narragansett Bay and Brook Trout habitat assessment in the Chesapeake Bay
- Later added Winter Flounder in Long Island Sound and TNC's Anadromous Fish Habitat Prioritization
- In cooperation with Midwest FHPs developed an on-line decision support tool

www.fishhabitattool.org

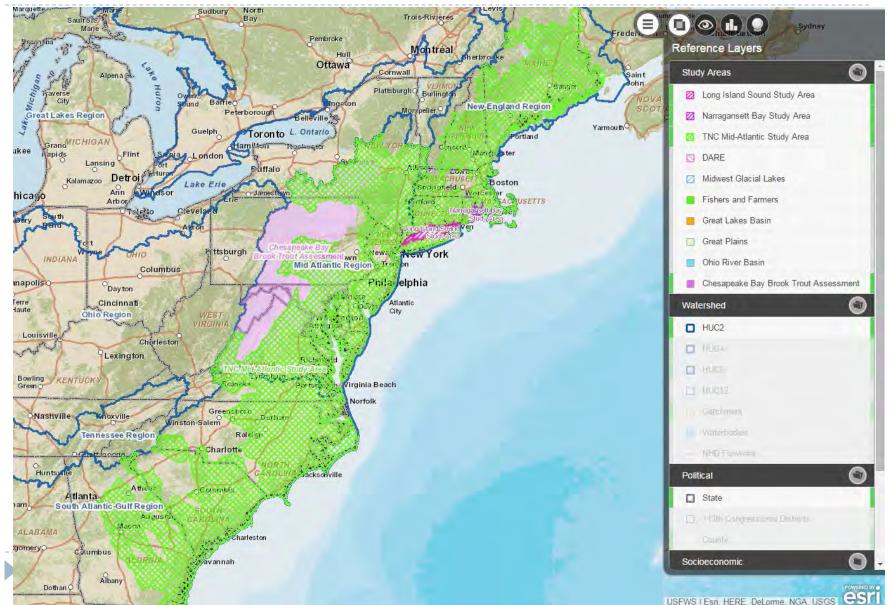

FISH HABITAT DECISION SUPPORT TOOL VISUALIZATION FUTURING RANKING

ABOUT THE TOOL

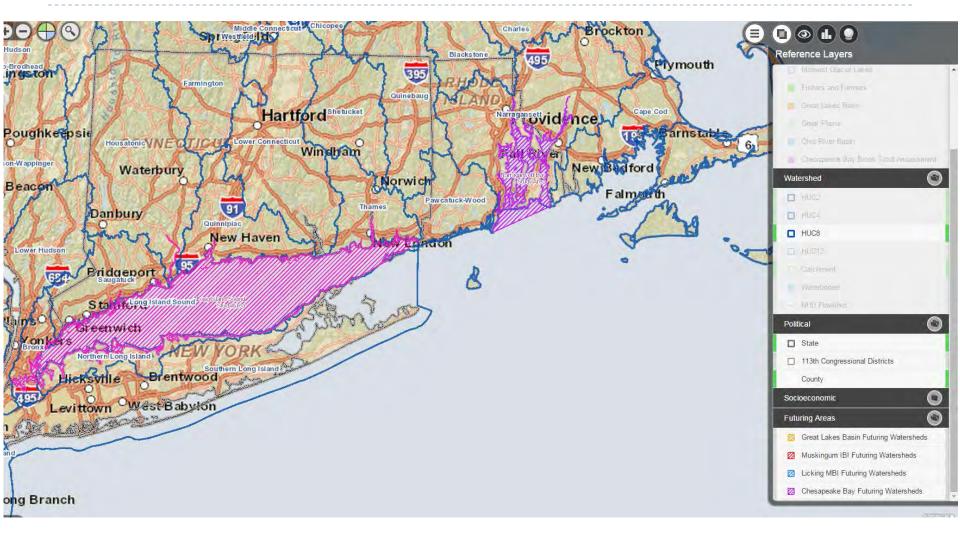
This tool was created with funding from the United States Fish and Wildlife Service to provide resource managers and the general public with access to the extensive spatial data and results produced from multiple fish habitat assessments.

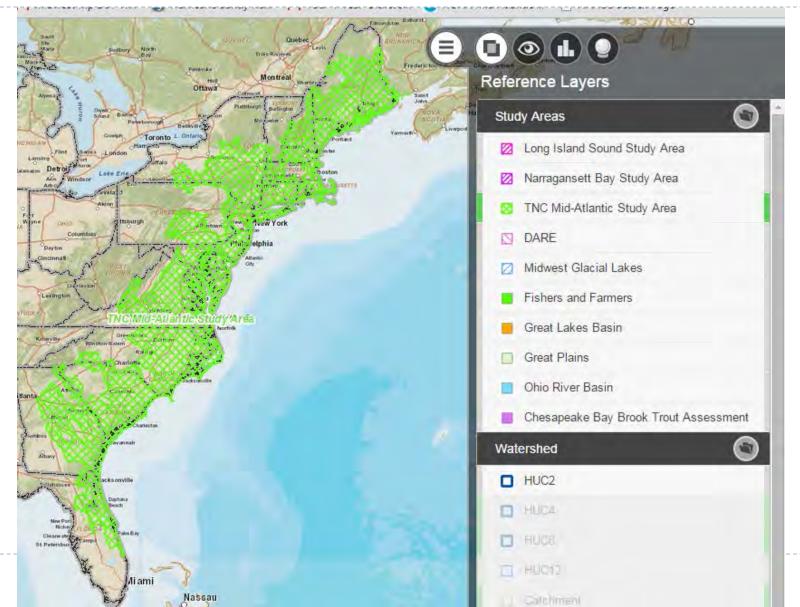

Additional assessments performed under funding and guidance from the North Atlantic Landscape Conservation Cooperative and the Atlantic Coastal Fish Habitat Partnership are also included within the same web mapping application.

Three main analytical tools (visualization, ranking, and futuring) are combined with intuitive basemaps and mapping features to allow users to explore the details of the assessments and perform subsequent analyses.



RELATED LINKS & RESOURCES


All FHP Habitat Assessments


North Atlantic LCC - Ches Bay Brook Trout, Mid-Atlantic Anadromous, and Narragansett and Long Island Sound Winter Flounder

Winter Flounder in Narragansett Bay and Long Island Sound – predictive models

TNC Mid-Atlantic Anadromous

TNC weighting for anadromous fish prioritization

MODE rev areas through res is also prese

Three main assight at loois (visualization, ranking, and tuturing) are compared with Infutitive transmaps, and mapping features to allow users to explore the details of the assessments and perform subsinguest analysis.

n Introduction

AAC.

RELATED LINKS & RESOURCES

Lisa is setting up a webinar to review metrics

	FISH HABITAT DECISION S VISUALIZATION FUTURING RANKING
n to the Fish Habitat Decisi O <	TOOL DATA INFORMATION
	PROJECTS
	MIDWEST & GREAT PLAINS FISH H Takin for over one mean rationees across the Mahaed serve compand for this project and data for over 30 different modes were consided during like project and is available within
	OHIO RIVER BASIN WATERSHED N The Otion Filver Basin Fish Haddid Partnership identified faed datarct watersheets as prior Fish Haddid Assessment, and the data from a more detailed analysis of these watersheets
	NORTH ATLANTIC LCC FISH HABI Welfer the Fish Habitat Tool, data is available for brook froat in the Chesaposite Bay well Sound and Kanagoweld Bay, all of which were produced darry this protect

TNC ATLANTIC COAST ALOSINE PRIOR

While this daila was complied and produced solely by The Nature Conservancy, it is hosted within the complement existing project data

Metric Category Metric Description Alewife Scenario Weight Blueback Scenario Weight American Shad Scenario Weight Population Integrated presence / run count metric. Separate metric for each spp using spp specific data where: 0 = none documented 1 = historical presence documented 1 = historical presence documented 2 = current presence documented 25 35 45

Population	0 = none documented 1 = historical presence documented 2 = current presence (no count) and count <=10,000 3 = count: >10,000	25	35	45
Habitat Quantity & Access	Area of Lakes and Ponds with no dams associated within each HUC	10	0	0
Habitat Quantity & Access	% of reaches within HUC12 that have connectivity (no barriers) to the ocean	10	10	5
Habitat Quantity & Access	% of Active River Area within each HUC that is occupied by NWI wetlands (any)	20	20	20
Habitat Quantity & Access	Area of estuarine emergent marsh within each HUC	10	10	5
Habitat Quantity & Access	Average anadromous scenario result for NE Aquatic Connectivity / SEACAP dams within HUC 12. HUC12s with no dams are assigned a mean score (10), to neither "help" nor "hurt" their score.	10	10	10
Water Quality	% of reaches in HUC whose cumulative watershed % impervious surface is >8%	10	10	10
Water Quantity	Dam storage - mean annual flow: % of flowlines within each HUC i>= 30%	5	5	5

Metric weighting as iterative process - calibrate draft results for each scenario to known priorities

Sum of weights

Ranking

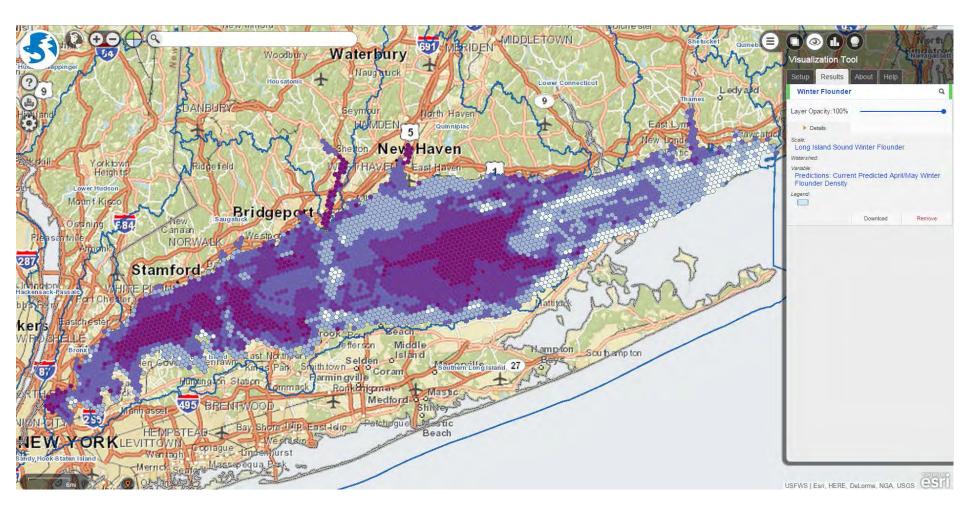
		10101010101	203,341	
1	3	10101010102	342,654	
	Ra	10101010103	572,594	
		10101010104	125,213	
se		HUC12	Area Lakes/ Ponds (rank)	Area Estua
Val	Valu	10101010101	3	
5.00				
2	Pa	10101010102	2	

100

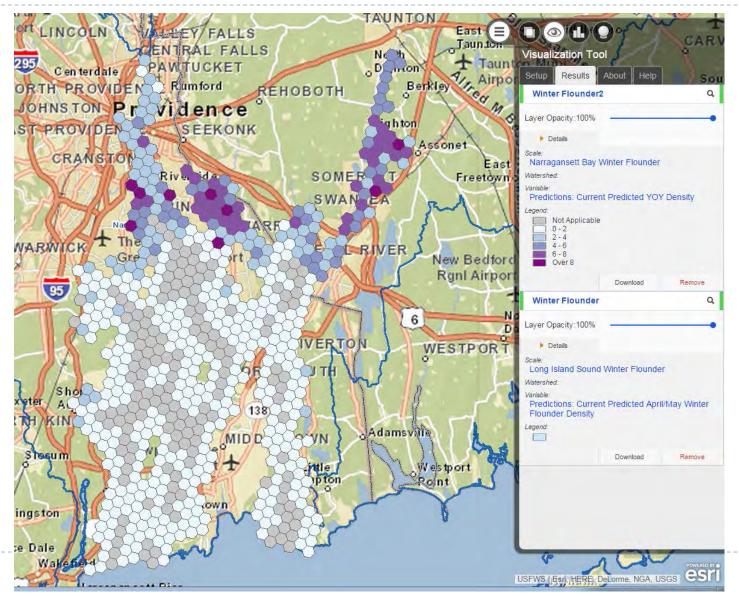
HUC12

10101010103 10101010104 100

Area Lakes Ponds (m²)

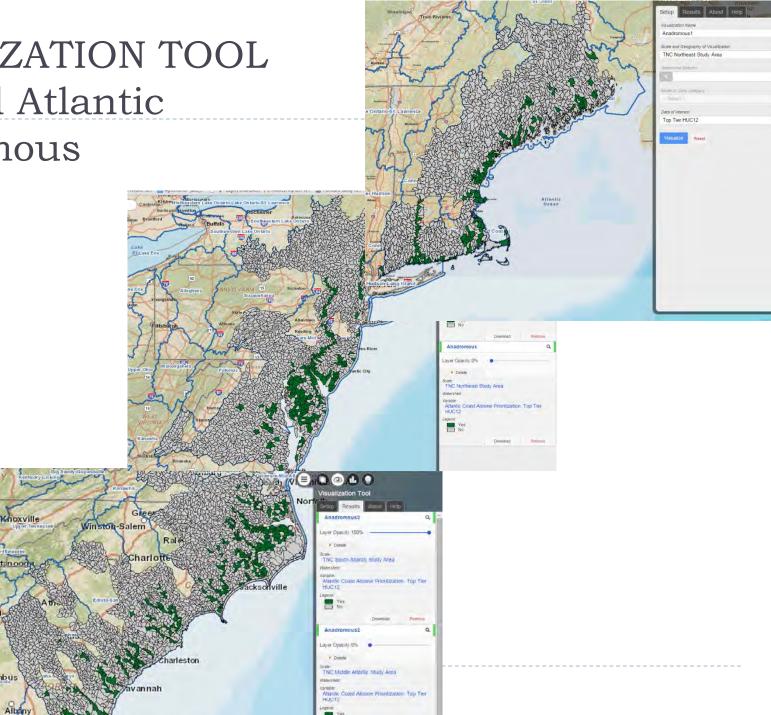

100

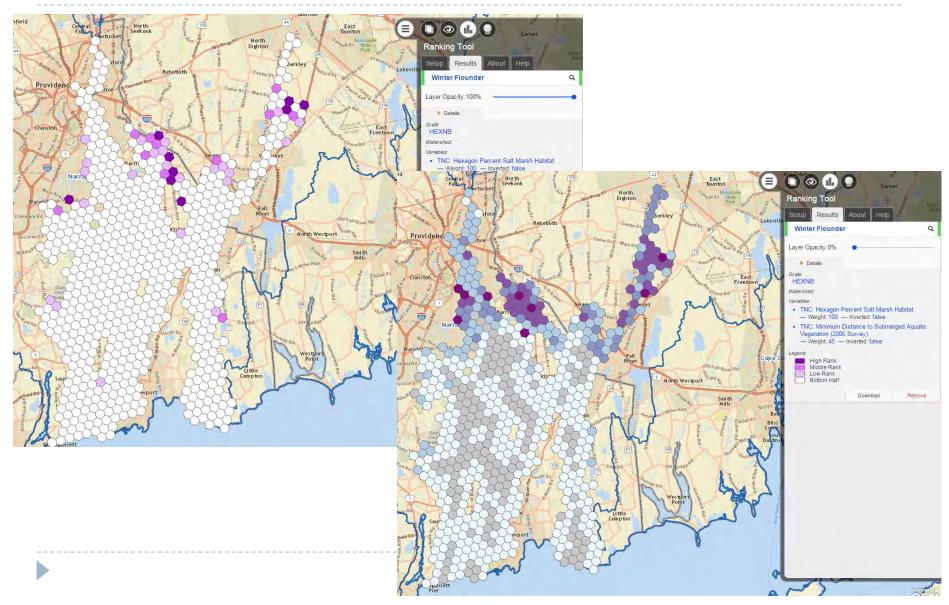
Area Estuarine Wetland (m²) 2,572 62,525


> 6,233 87,425 rrine Wetland (rank) 4 2

Simple & transparent

VISUALIZATION TOOL Predicted Winter Flounder Density


VISUALIZATION TOOL Predicted Winter Flounder Density


VISUALIZATION TOOL TNC Mid Atlantic Anadromous

attinoc

umbus

RANKING TOOL Narragansett Bay Winter Flounder

DAKOTA Pierre Saint Paul x Ealls Madison Milwarkee Grud Rapids × Lansing Wet Chicago oines The ranking methodology implemented in this tool differs ILLINGIS INDIANA Spingfieldo from the methodology used by Indianapolis Columbus The Nature Conservancy to SaintLouis Cincinedti in City Frankfor produce the prioritized Tiers that KENTUGKY are available for display via the Nashville Knoxyill, Greensboro Visualization tool. Therefore, it is not possible to regenerate the Memp ucu Little R. Prioritization Tiers, even if the EW Given XICO Birminghom Adant same metrics are selected. ISSI ALABAMA Jackso Mintgomery GEORG TEXAS P ton Rouge Tallahaceee

Austin

San Antonio

Minneapolis

Bismarch

SOUTH

Chihua

Sudbury Model or Data Category Ottawa Montrea Select data category by m what data is available in th Liata of Interest -- Select -ster add /ariable Remo Reset Pitts! urgh Hameburg Abhadelphia Washington foll acksonville

Charlestor

Columbia

OBando

Tampa

Next Steps

Assess TNC anadromous fish habitat prioritization

- Webinar late November or early December
- Look at weights attributed to each habitat variable
- Determine if more funding is needed to make any proposed changes
- Discuss how to get the word out about the decision support tool
 - Bi-weekly conference calls with the midwest FHPs
- How can ACFHP use decision support tool?
- How can on the ground practitioners use the tool?

Events in the Indian River Lagoon

Chuck Jacoby

Supervising Environmental Scientist,

Estuaries Section, St. Johns River Water Management District Lead Scientist,

Indian River Lagoon Basin, St. Johns River Water Management District Program Scientist,

Indian River Lagoon National Estuary Program

How can we characterize the lagoon?

Lagoon is:

Sensitive

- Long (156 miles)
- Shallow
- Wind & tide driven
- Not a river (no flow)
- Segmented (flushing 2 wks–3 mos)
- Diverse
 - ecology
 - challenges

What is a shared challenge?

Nutrient impairment

Total Maximum Daily Load (TMDL) = safe load

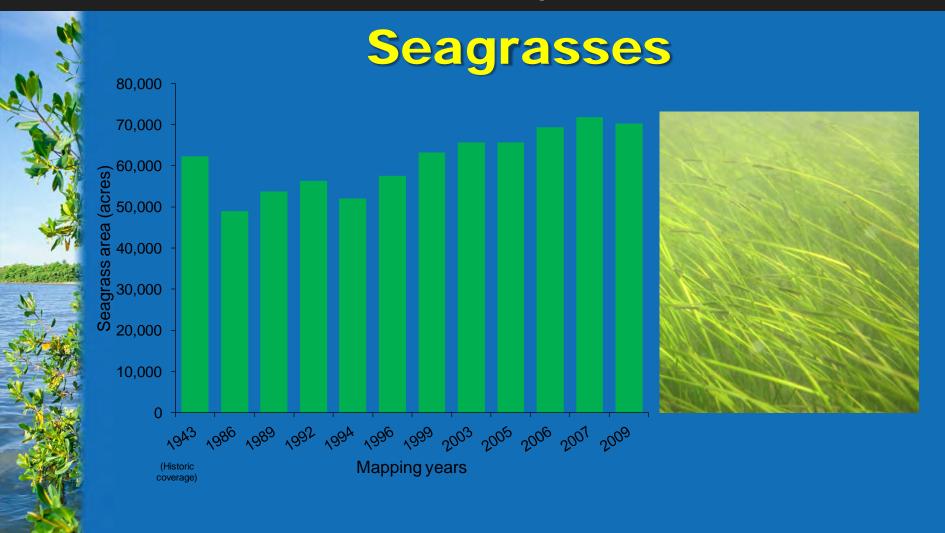
Nutrient impairment

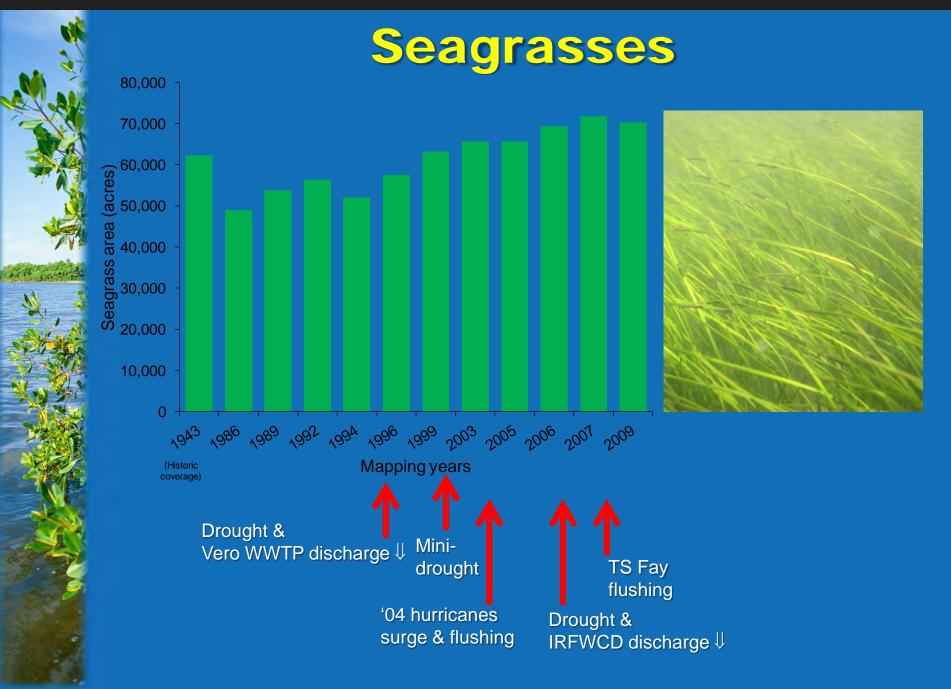
- Total Maximum Daily Load (TMDL) = safe load
- Loads + Margin of Safety > TMDL ⇒ reductions

Nutrient impairment

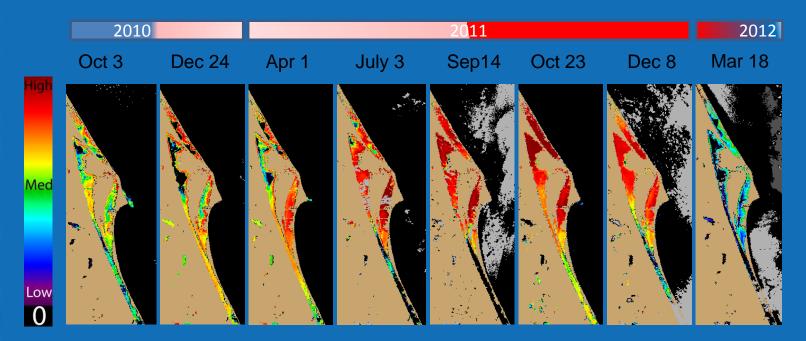
- Total Maximum Daily Load (TMDL) = safe load
- Loads + Margin of Safety > TMDL ⇒ reductions
- Adaptive approach to uncertainty
 - monitor (seagrass = a key indicator)
 - evaluate progress
 - adapt as needed

Nutrient impairment


- Total Maximum Daily Load (TMDL) = safe load
- Loads + Margin of Safety > TMDL => reductions
- Adaptive approach to uncertainty
 - monitor (seagrass = a key indicator)
 - evaluate progress
 - adapt as needed


Summarize in Basin Management Action Plans

How are we doing?



Algal blooms

Initially two phytoplankton (microalgal) blooms

Superbloom in the north – record magnitude & duration

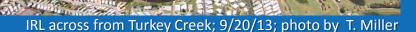
Other bloom in CIRL – lower magnitude & long duration

2012 Brown tide (*Aureoumbra lagunensis*)

D. Scheidt, IHA

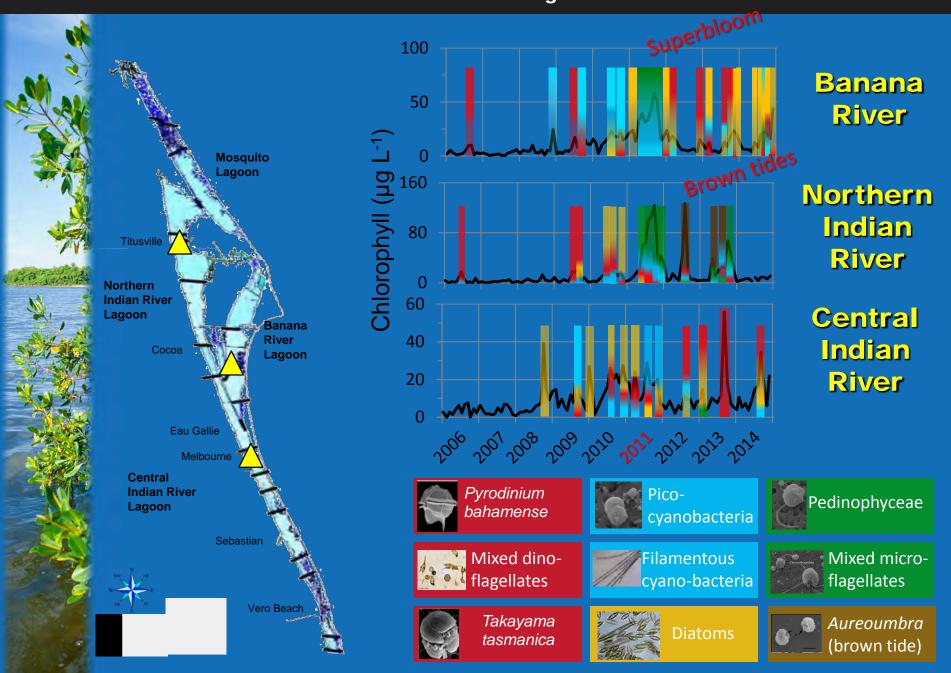
K. Young, Volusia County

Indian River Lagoon National Estuary Program and St. Johns River Water Management District

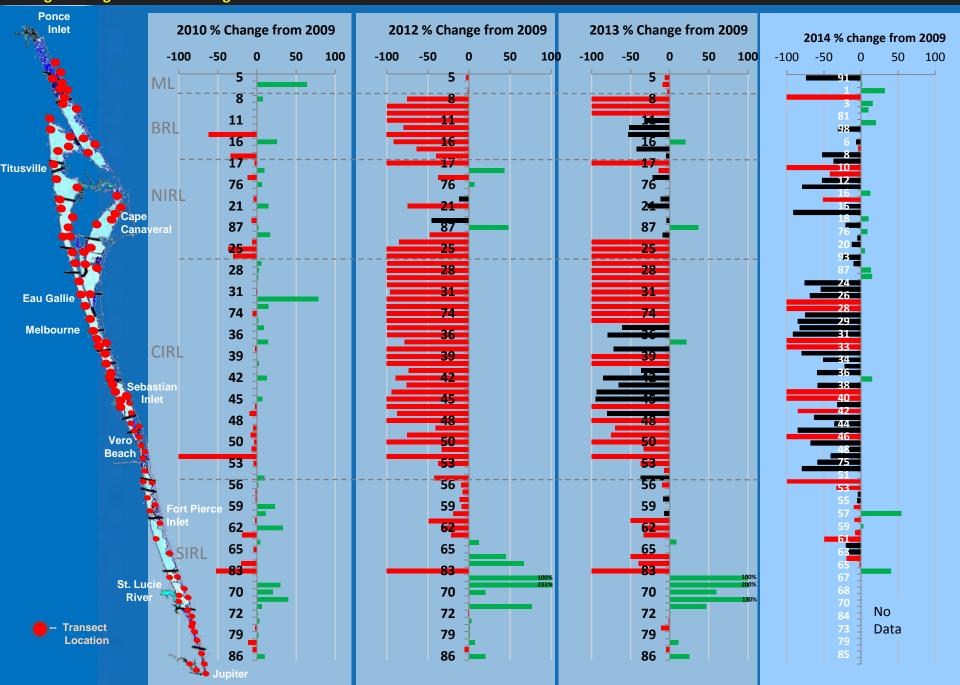

2013 Algal blooms

Takayama tasmanica

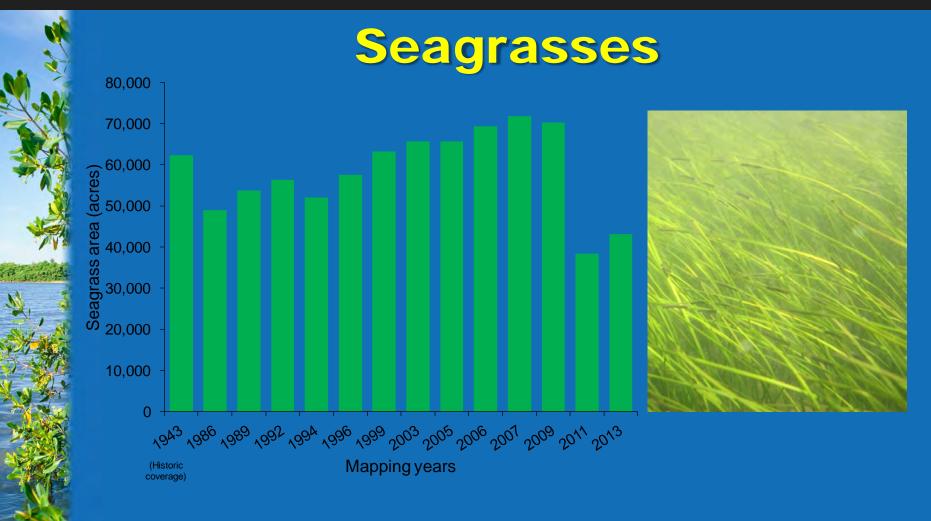
Mouth Banana Creek; 9/6/13; photo by T. Miller


Pyrodinium bahamense

Banana River; 8/28/13; photo by D. Scheidt


IRL east shore by 528 Cswy; 9/6/13; photo by T. Miller

Change in Seagrass Transect Length St. Johns River Water Management District


Ponce 2012 % Change from 2009 2010 % Change from 2009 2011 % Change from 2009 2013 % Change from 2009 Inlet RA -100 -100 -100 -50 -100 -50 -50 -50 ML ML BRL BRL Titusville NIRL NIRL Cape Canaveral Eau Gallie 📩 CIRL Melbourne Sebastian Vero Beach Fort Pierce SIRL 200% 233% 100% 233% 100% 200% St. Luc Rive 230% 130% Transect Location

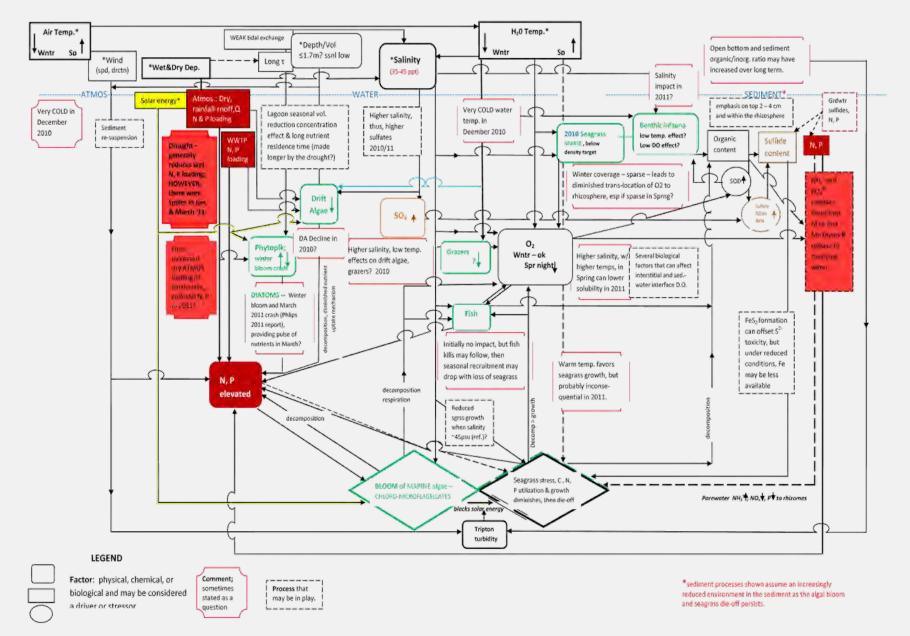
Change in Seagrass Transect Length

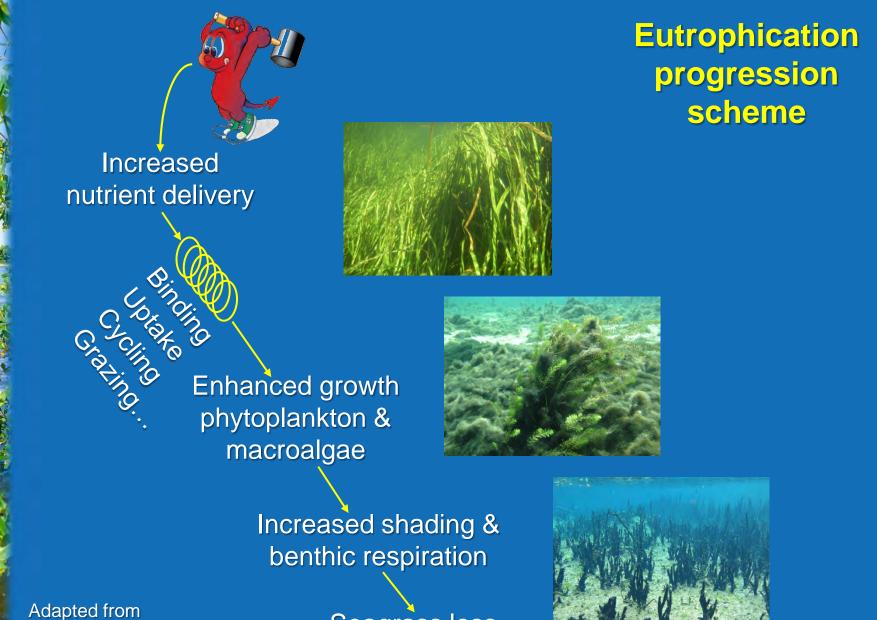
Loss of ~30,000 acres ~45% of the acres mapped in 2009

Some recovery in 2013 ~12% gain from 2011 – not uniform

What happened?

Caveats


"All models are wrong; some models are useful." (attributed to George Box)


"Ecosystems are not only more complex than we think, they are more complex than we can think."

(Egler, Frank. 1977. *The nature of vegetation: its management and mismanagement.* Aton Forest Publishers, Norfolk, Connecticut)

> "It's tough to make predictions, especially about the future." (Yogi Berra)

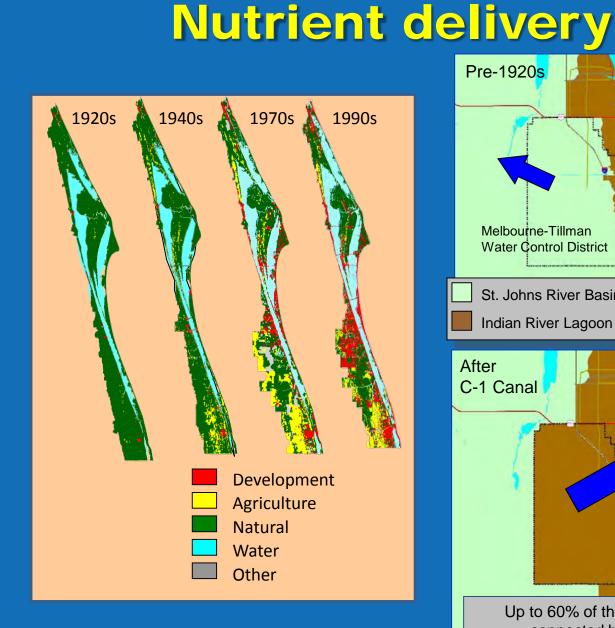
2011 ALGAL BLOOM & SEAGRASS DIE-OFF POSSIBLE INTERACTION OF PHYSICAL, CHEMICAL, & BIOLOGICAL FACTORS

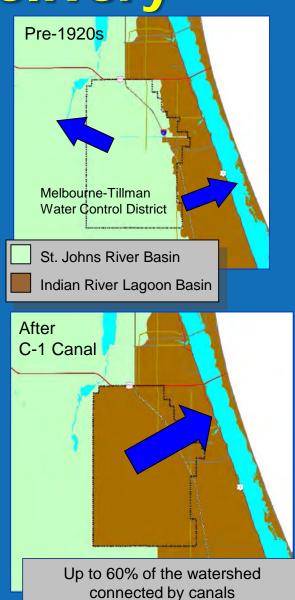
Adapted from C.M. Duarte (1995)

Seagrass loss

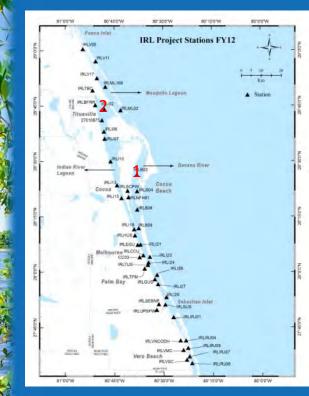
Does the model fit?

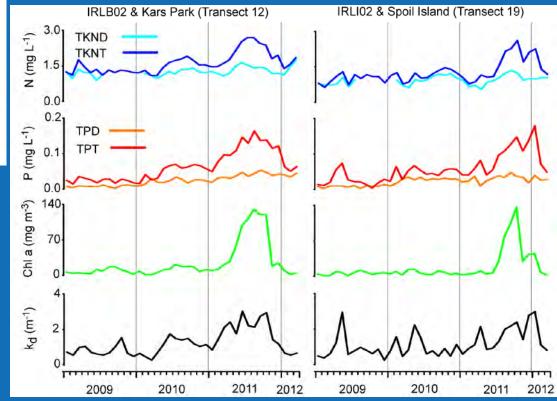
Melbourne ca. 1943





Melbourne ca. today

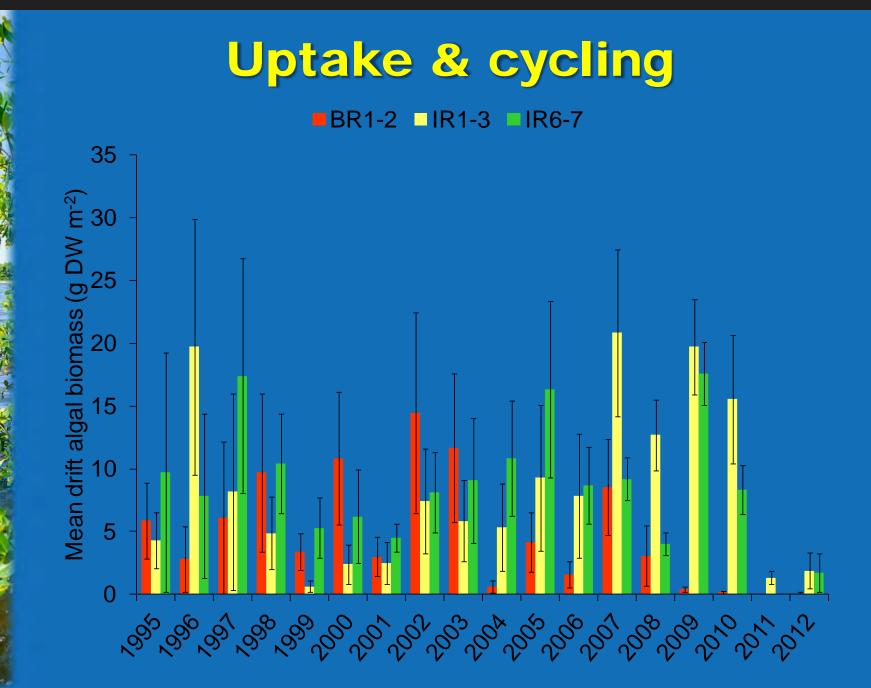




Indian River Lagoon National Estuary Program and St. Johns River Water Management District

External nutrient loads

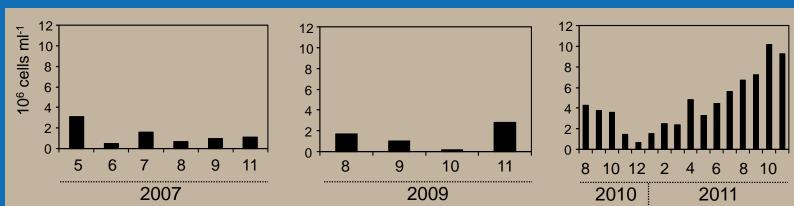
Uptake & cycling


Drift Macroalgae "Tumbleweed" of the Lagoon

Benefits: habitat, nutrient "sponge"

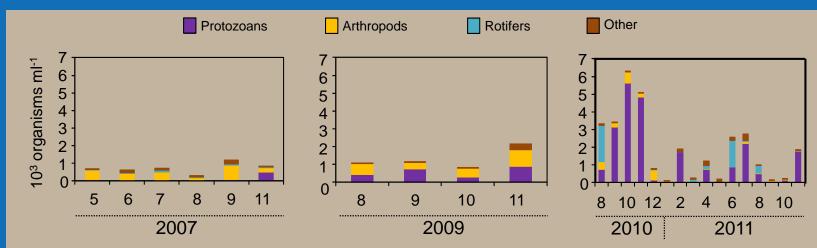
If overabundant, it can be a ...

Detriment: outcompete seagrass, be a major source of nutrients



Bacteria counts

Not bacterial contamination


Site 3 – Central Banana River

Bacteria cycle nutrients rapidly

Zooplankton

Site 3 – Central Banana River

Protozoans & grazing increase Salinity \Rightarrow decrease?

What will we do?

Indian River Lagoon Protection Initiative

St. Johns River Water Management District Strategic Plan

April 2013 to October 2018 April 9, 2013

Appendix Strategic Initiatives

Initiative Indian River Lagoon Protection

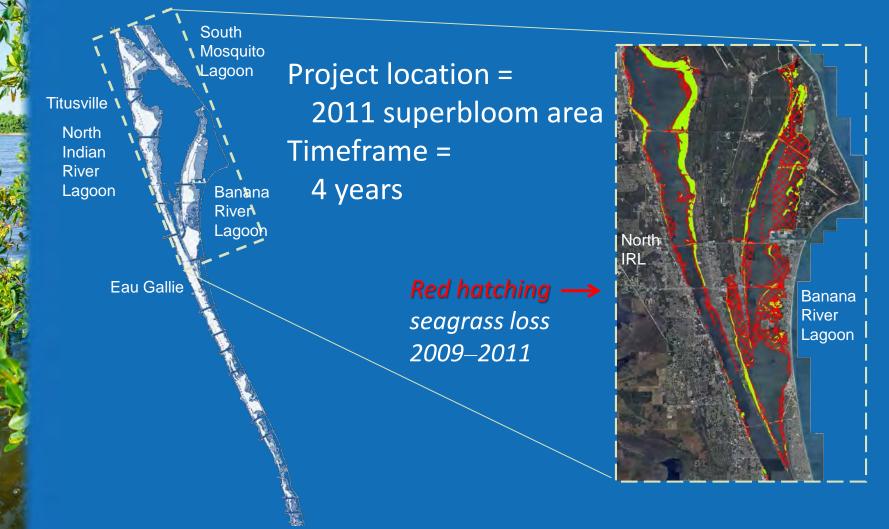
Objective

To restore the water quality and ecological habitat value of the Indian River Lagoon.

Background

The salient goal for restoration of the Indian River Lagoon is increased abundance of seagrasses. The lagoon has a thriving sport fishery, which is largely dependent on the health and abundance of seagrasses.

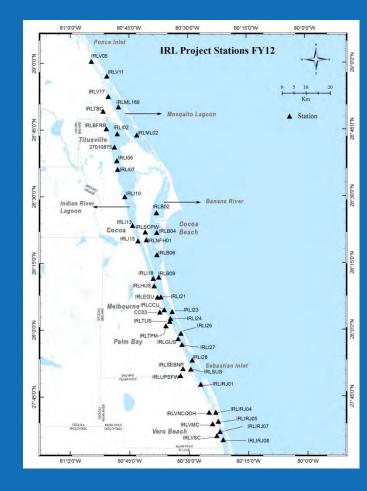
Current and ongoing focus


In 2011, an extensive and persistent phytoplankton bloom developed that decreased water clarity to historically low levels. During the bloom, seagrasses declined over large areas to levels lower than previously measured. The loss of seagrasses amounted to about 35,000 acres. Based on the minimum estimated annual value of seagrass beds, this equates to approximately a \$175 million loss to commercial and recreational fisheries. A second phytoplankton bloom developed in 2012.

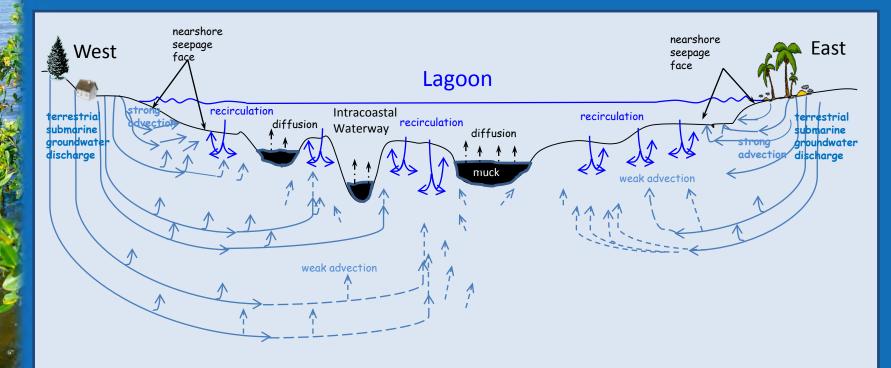
The ecological causes of these blooms are unknown. The blooms were not expected given the extensive reconnection and restoration of wetlands, an antecedent trend toward improved seagrass cover, and no concomitant and proportionate increase in pollutant and freshwater loadings. Lacking a better understanding of causation, it is unlikely that a cost-effective strategy for bloom prevention can be developed. This initiative would support the additional data collection, analysis, and modeling needed to deduce the fundamental causes of the blooms as a basis for development of an improved management plan.

Sample Projects

- 1. Comprehensive Conservation and Management Plan implementation
- 2. Investigation of recent phytoplankton bloom
- 3. Coastal wetland rehabilitation projects (federal/SJRWMD cooperative funding)
- 4. Small projects funded by Indian River Lagoon license plate funds (Volusia, Brevard, and Indian River counties


Indian River Lagoon Algal Blooms Investigation

Blue Team


Enhanced sampling

- event sampling of inputs
- atmospheric deposition
- sensors for continuous data
- bacterioplankton
- phytoplankton
- microzooplankton
- Updated & enhanced models
- Nutrition for bloom species
- Grazing by microzooplankton

Sand Team

Sediment survey
Groundwater model
Internal nutrient budget (flux)

Green Team



Figure 1. Map of donor and recipient sites in this study.

Seagrass transplanting

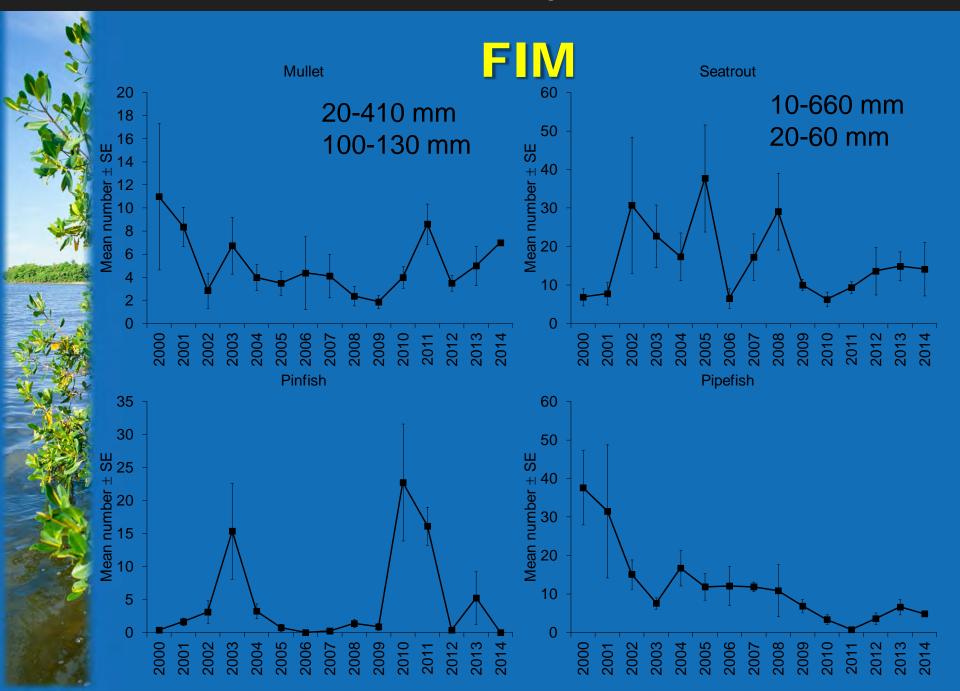
Drift algae mapping

- Drift algae tolerance
 - temperature
 - salinity
 - light

Nutrient content & release

- drift algae
- seagrasses

Orange Team


Enhanced sampling

- fisheries independent monitoring
- macrozooplankton
- infauna
- epifauna
- Grazing
 - macrozooplankton
 - infauna
 - epifauna

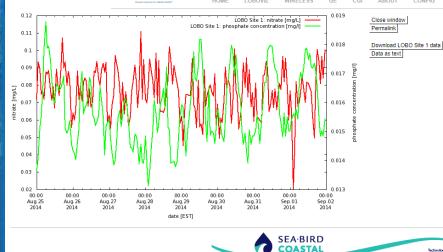
Understand

- the lagoon's nutrient inventory & cycling
- processes that regulate blooms
- Evaluate & recommend strategies
 - ameliorate blooms
 - o magnitude
 - o duration
 - o frequency
 - facilitate seagrass growth & expansion
 - enhance diverse trophic structure

Brevard County and IRL Research Institute • Efficiency & effects of dredging

Ocean Research & Conservation Association ORCA Public Map Display **KFL0008** The basic KilroyTM sensor suite measures flow speed, flow direction, water temperature, water level, GPS location and power.Additional sensors incorporated into different units include an ORCA-designed turbidity sensor (ORCA TM). ORCA-designed flow-through 'West Inlet' bathyphotometer (ORCA BPTM) to measure bioluminescence as well as third-party sensors including salinity, pH, dissolved oxygen, nitrate and phosphate. Mousing over the measurments will display further details about the specific measurement Map Satellite **GPS** Position W -80° 19' 04" Kilroy N 27º 28' 38" Weather 0.92 m (3.02 ft) Depth Flow Direction ENE (78°) Weath Flow Speed 1.035 m/s (2.315 0 mph) Vater Temp. 30.0°C (86.0°F) Fort Pierce Inlet Project - location 'West Inlet' Plot Historical Data Enable Flow Animation Google magery @2014 TerraMetrics Terms of Use Report

Harbor Branch Oceanographic Institute


LOBO ORIDA ATLANTIC UNIVERS

Land/Ocean Biogeochemical Observatory CONTACT ABOUT CONFIG

SATEANTIC

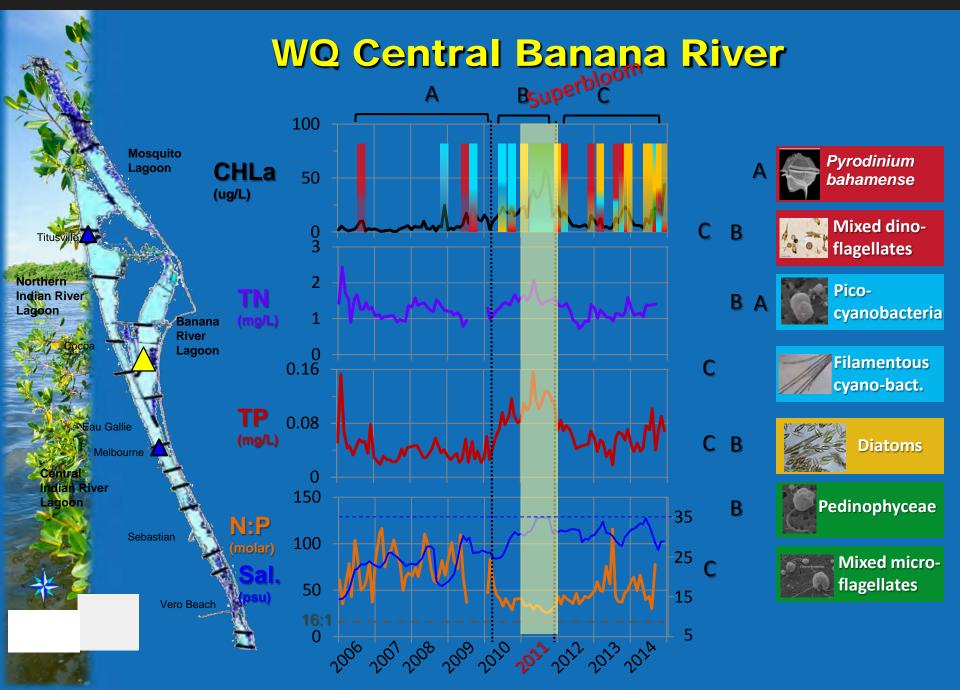
WET

SBE Sea-Bird

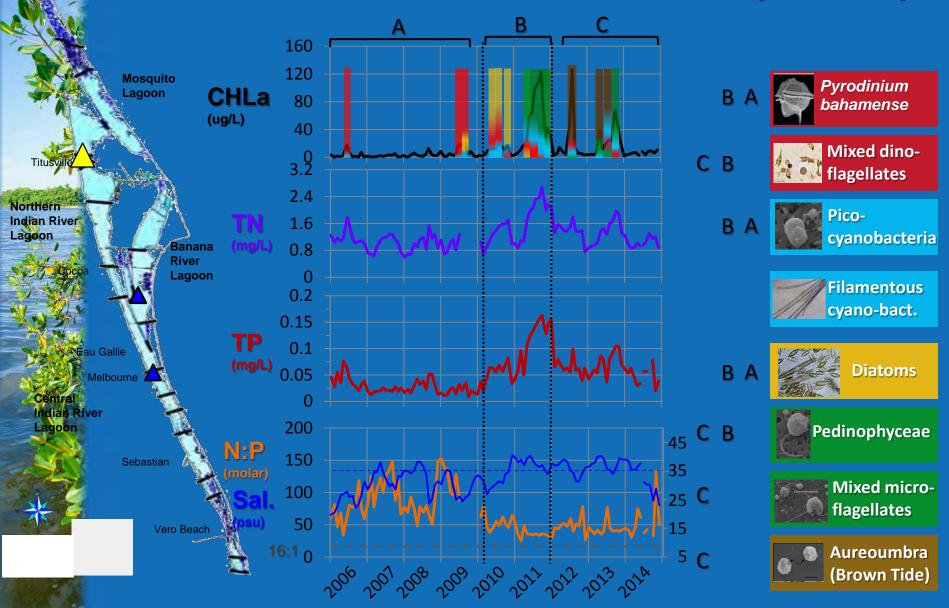
S. Navy, NGA, GEBCO

andsat

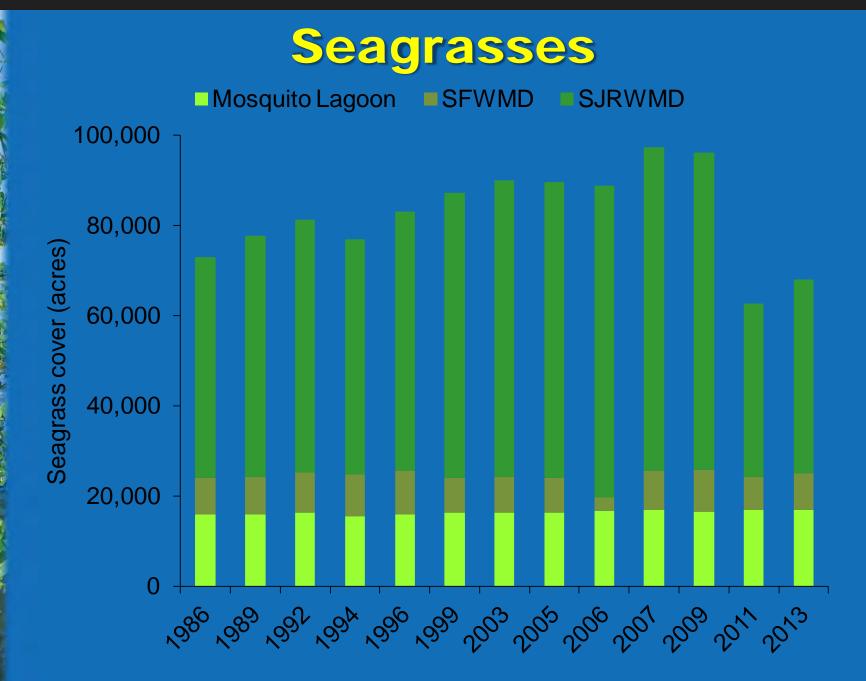
IRL-VB


IRL-HBOI

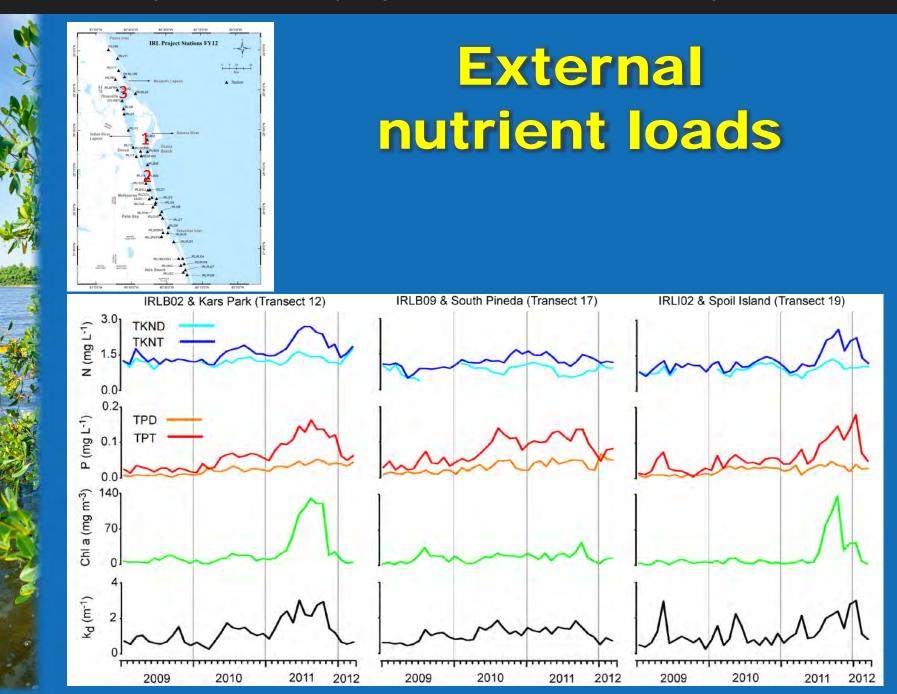
IRL-FP


IRL-SB

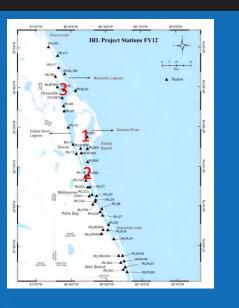
Thank you for your time



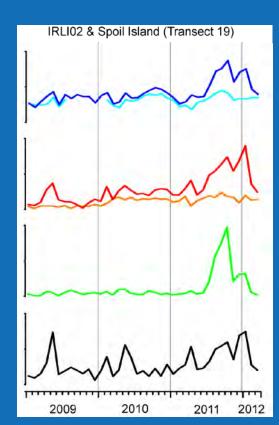
WQ North IRL - Titusville (IRLI06)



WQ Central IRL (Melbourne)



Indian River Lagoon National Estuary Program and St. Johns River Water Management District



Indian River Lagoon National Estuary Program and St. Johns River Water Management District

External nutrient loads

ACFHP SCIENCE AND DATA COMMITTEE WORKSHOP UPDATE

C. Shumway (Chair) Marek Topolski (Vice-Chair) Nov. 5, 2015

ACFHP Science/Data Tasks As We Know It

THE MATRIX

1. Create searchable database of species/habitat and references for matrix

2. Create map of species/habitats

WEB-BASED TOOL

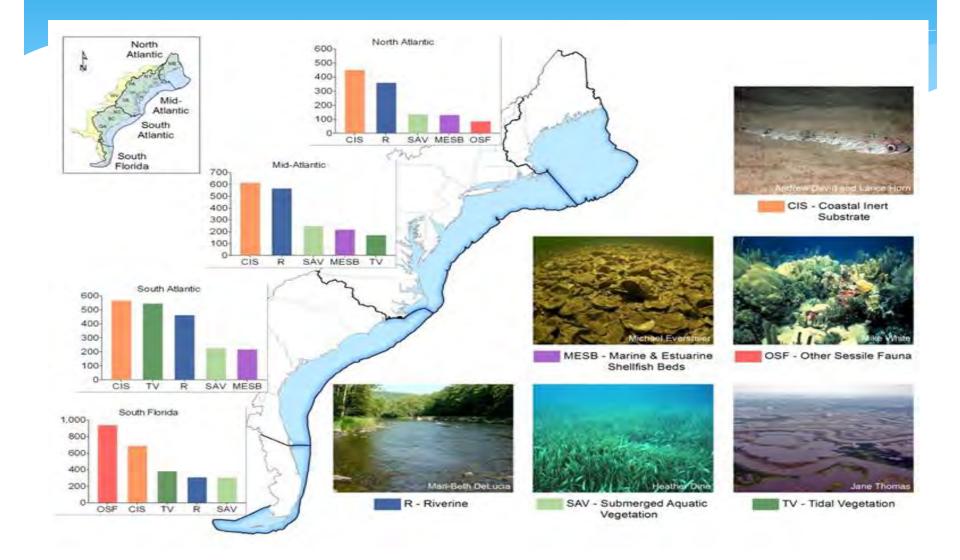
1. Create decision-support tools that incorporate NALCC modeling, matrix, and assessment.

2. Consider adding impervious surfaces to Downstream Strategies decision support tool.

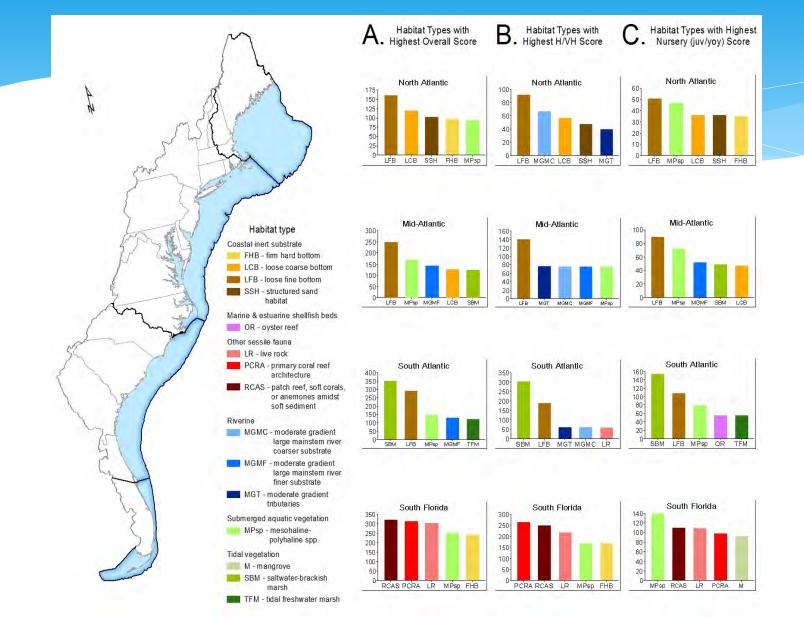
ASSESSMENT

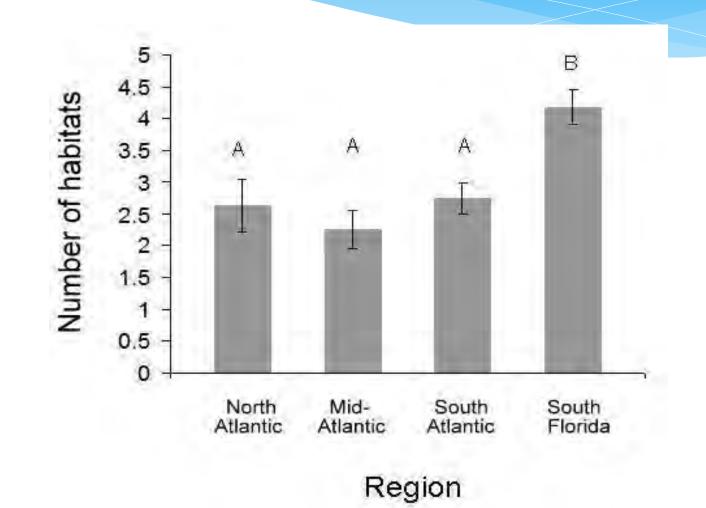
1. Improve assessment of existing information; add regional info

Other


Improve matrix, incorporating rarity/vulnerability to climate change/(seasonality ?)
 No time to address.

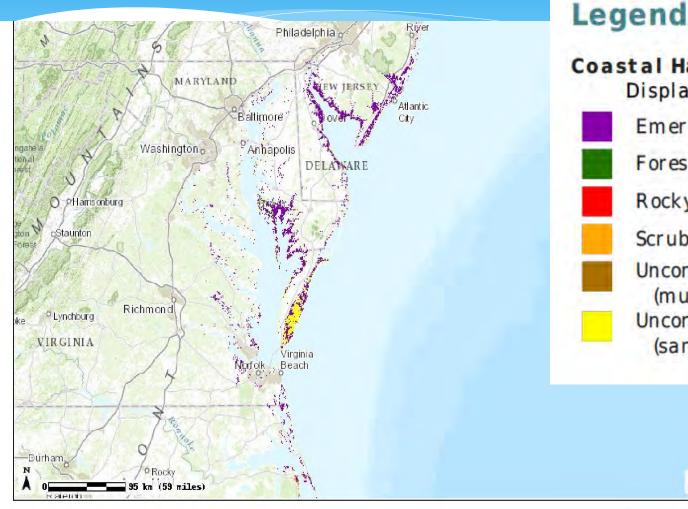
MATRIX HABITAT CATEGORIES & TYPES


HABITAT CATEGORIES	HABITAT TYPES
Habitat Category	Habitat Type
Marine & Estuarine Shellfish beds	Oyster reef
	Scallop beds
	Hard Clam beds
	Dead shell accumulations
Other Sessile fauna	Printery corel reef architecture
	Patch reef, soft corais or anemones amidst soft sediment
	Live rock (inert hard bottom with hydroids, bryozoans, tube worms, sponges etc)
Macroalgae	Fucus, Laminaria, Ulva lactuce mats
SAV	Tidal fresh & Oligohaline spip.
	Mesohaline-Polyhaline spp.
Tidal vegetation	Saltwater/Breckish marsh
	Tidal FW marshes
	Mangrove
Coastal Inert substrate	Loose fine bottom (mud, silt, sand)
	Loose coarse bottom (gravel to cobble)
	Firm hard bottom (boulders to embedded rock)
	Structured sand habitat (shoals, capes, offshore bars, etc)
Riverine	High gradient headwater tributaries gravel-cobble dominate
	Lower gradient tributaries- sand, grave and small cobble dominate
	Higher gradient large mainstem river- sand, gravel, and cobble dominant
	Lower gradient large mainstem inver- fine sediments dominate (silt-mud- send)
	1st order coastal streams
	non-Edal FW mussel beds
$ \rightarrow + $	non-easi nwi mussei peas
	Coastal headwater Ponds


The Matrix

The Matrix (Fig.2)

The Matrix (Fig. 3)


MATRIX HABITATS

HABITAT CATEGORIES	HABITAT TYPES					
Habitat Category	Habitat Type					
	Oyster reef					
Marine &	Scallop beds					
Estuarine Shellfish beds	Hard Clam beds					
	Deed shell accumulations					
	Printary corel reef architecture					
Other Sessile	Patch reef, soft corels or anemones amidst soft sediment					
fauna	Live rock (inert hard bottom with hydroids, bryozoans, tube worms, sponges etc)					
Macroalgae	Fucus, Laminaria, Ulva lactuce mats					
0.00	Tidal fresh & Oligohaline spp.					
SAV	Mesohaline-Polyhaline spp.					
	Saltwater/Brackish marsh					
idal vegetation	Tidal FW marshes					
	Mangrove					
	Loose fine bottom (mud, silt, sand)					
1.00	Loose coarse bottom (gravel to cobble)					
Coastal Inert substrate	Firm hard bottom (boulders to embedded rock)					
	Structured sand habitat (shoals, capes offshore bars, etc)					
	High gradient headwater tributaries gravel-cobble dominate					
	Lower gradient tributaries- sand, gravel and small cobble dominate					
	Higher gradient large mainstem river- sand, gravel, and cobble dominant					
Riverine	Lower gradient large mainstem river- fine sediments dominate (silt-mud- sand)					
100	1st order coastal streams					
1.0.1	non-Edal FW mussel beds					
K	Coastal headwater Ponds					
1. Contract 1. Con	Non-tidal FW marshes					

SHOULD WE MAP HABITAT CATEGORIES OR TYPES?

DECISION: MAP HABITAT CATEGORIES

Coastal Habitat Types (NALCC)

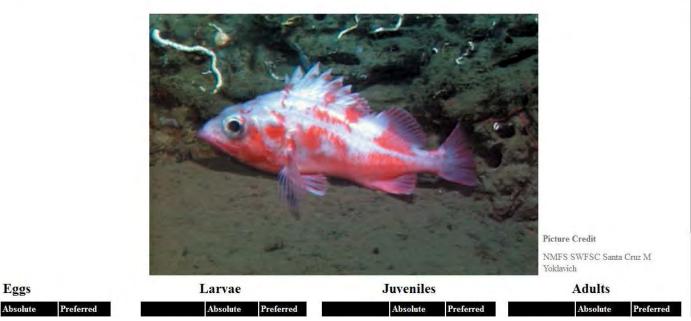
Coastal Habitat Displaying: HAB_FINAL (bldd

Emergent Marsh

Forested

Rocky Shore

Scrub-Shrub


Unconsolidated Shore (mud, organic, flat) Unconsolidated Shore (sand, gravel, cobble)

DATA BASIN

67.47

Example of Web Page for Matrix

			Common Name	Aurora Rockfish	Download Data
Choose Species	Aurora Rockfish	+	Scientific Name	Sebastes aurora	
			Sciencine ryame	seoasies aurora	

Species Category

FMP Groundfish *

ACFHP Science/Data Decisions: Day 1

* Putting the Species Habitat Matrix online

- On website: drop-downs for geography (i.e., ACFHP region, subregions), habitat, species, life stage + downloadable data (easy to manipulate)
- Will not have comments box (email address for new references and will be reviewed annually)
- Subgroup: Marek, Lisa M., Caroly, Julie, Lisa H. (may include some steering committee)
- Timeframe: next 3 months
- Action: Follow-up with George Schuler (TNC) for pricing options.

ACFHP Science/Data Decisions: Day 1

Creating a Map of Matrix Habitat/Species

- We will map habitat <u>categories</u>.
- We will map only those habitat types that are already available.
- We considered use of existing maps for these habitat categories.
- We are considering asking NALCC/SALCC for funds to map riverine habitat types.

ACFHP Science/Data Tasks As We Know It

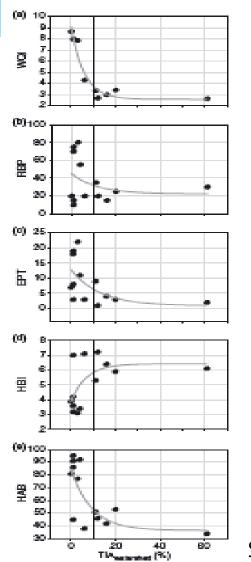
THE MATRIX

1. Create searchable database of species/habitat and references for matrix

2. Create map of species/habitats

WEB-BASED TOOL

- 1. Create decision-support tools that incorporate NALCC modeling, matrix, and assessment.
- Consider adding impervious surfaces to Downstream Strategies decision support tool.


ASSESSMENT

✓ 1. Improve assessment of existing information; add regional info

Other

Improve matrix, incorporating rarity/vulnerability to climate change/(seasonality ?)
 No time to address.

IMPERVIOUS SURFACE IMPACTS

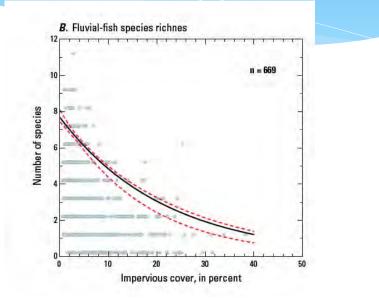


Figure. 2. Quantile regression relations between, fluvial-fish species richness and percent impervious cover for the contributing areas to selected fish-sampling sites on Massachusetts streams. CI, confidence interval; n, number of sites. Fish samples were collected from 1998 to 2008. From Armstrong (2011).

Schiff and Benoit, 2007

ACFHP Science/Data Tasks As We Know It

THE MATRIX

1. Create searchable database of species/habitat and references for matrix

2. Create map of species/habitats

WEB-BASED TOOL

- 1. Create decision-support tools that incorporate NALCC modeling, matrix, and assessment.
- Consider adding impervious surfaces to Downstream Strategies decision support tool.

ASSESSMENT

✓ 1. Improve assessment of existing information; add regional info

Other

Improve matrix, incorporating rarity/vulnerability to climate change/(seasonality ?)
 No time to address.

Assessment of Existing Information on Atlantic Coastal Fish Habitat :

<u>Database:</u> Bibliographic table, Assessment table (indicators, threats, actions) – both linked to base map. Exported to SQL Server for web development.

<u>GIS:</u> Basic ArcGIS project using NOAA's *Coastal* Assessment Framework and Marine Cadastre as starting point for spatial organization of information, exported to ASP.net and GoogleEarth for web development.

<u>Document:</u> Project summary report published as NCCOS Tech. Memo. 103 (February 2010), with summaries of methods and results.

Not a thorough bibliography, habitat assessment, IEA, or IMS!

Moving to the Web

October 2008 – CCMA website hosts project page:

http://ccma.nos.noaa.gov/ecosystems/estuaries/coastalfish.html

		Science Serving Coastal Communities
Iome About Us News & I	Features	Research Publications & Products Data Stressors Ecosystems Opportunities
Search Go »		* You are here: Home • Ecosystems • Estuaries • Assessment of Existing Information on Atlantic Coastal Fish Habitats
C This site C NOAA		Assessment of Existing Information on Atlantic Coastal Fish Habitats
Biogeography	Ŧ	
NCCOS Centers	-	Quick Link to Products
Estuary Projects	÷	Objectives
		(ACFHP) to develop a strategy to conserve, protect, restore, and enhance aquatic habitats along the U.S. Atlantic Coast from Maine to Florida. This strategy will only succeed if it is built upon the best available information. Therefore, the specific goal of this project is to develop and deliver a comprehensive Assessment Database of Atlantic coastal habitats, species, stressors, and regulations to inform and enable ACFHP's conservation planning.
		Several objectives that must be met in order to achieve this project's goal include:
		 With guidance from the ACFHP Steering Committee, craft a work plan with specific tasks and "deliverables" that can be feasibly completed within the proposed timeline.
		 Using the best available search methods, assemble a comprehensive bibliography of existing information on Atlantic Coast habitats and species.
		 Using the best available bibliographic methods, design and create a useable database to capture all of the compiled information.
		 Develop the database as a "spatial bibliography" by linking the spatial footprint of each entry with a suitable framework in ArcGIS.
		 Through close coordination with ACFHP, develop a set of topics and questions which can be analyzed using the database.

Assessment Database on the Web

February 2010 - http://www8.nos.noaa.gov/bhv/spatbibindex.html

🎒 🍚 👻 http://we	bdev.nos.noaa.gov/bhv/spatbibindex.html	🗾 🦘 🗙 Live Search	P -					
ile Edit View Favorites	Tools Help							
👌 🎲 📀 Untitled Docu	iment	🏠 + 🔂 - 🖶 + 😥 Pe	age 🕶 🌍 Tools 🔹 🎽					
NCC								
Atlantic Coastal F	ish Habitat Database: A Tool for Geospa	tial Assessment of Existing Information						
ACFHP Data Links	The Atlantic Coastal Fish Habitat Database provides to (ACFHP) with the capability to review and summarize	existing information on Indicators, Threats,						
Bibliographic Query Assessment Query	and Actions, to inform strategic conservation planning The links to the left launch these three query modules							
Geospatial Query	Bibliographic Query – using a set of sequential parameters in pull-down menus, this query generates a list of documents and data sources pertaining to a particular water body. Output includes standard bibliographic information such as Title, Year, Authors, Organization, and Publication Info – as well as Habitat Type, Information Type, and Web Location (if an item is available, a "Click Here" link is provided).							
	Assessment Query – generates a list of indicators (m stressors), and/or actions (conservation recommendat watershed, with sources cited.							
	Geospatial Query – provides a GoogleMaps interface or assessment information.	to launch a query of either the bibliographic						
	The tables (Bibliographic, Assessment, and Geospatia Database were developed in Microsoft Excel and export framework polygon layer was developed in ArcGIS and being used by ACFHP to develop a strategy to conser- native Atlantic coastal, estuarine-dependent, and diad recognized as a 'candidate' Fish Habitat Partnership u (NFHAP), with participation from federal and state age organizations, and local entities.	rted to SQL Server, and the spatial I exported to Google Maps. The database is ve, protect, restore, and enhance habitat for romous fish from Maine to Florida. ACFHP is under the National Fish Habitat Action Plan						
	More information on development of the Atlantic Coast http://ccma.nos.noaa.gov/ecosystems/estuaries/coas							

Bibliographic Data Table

Notes
link to assessment table
"click here" to access website and/or pdf
not for inclusion on web version
link to geodatabase
link to geodatabase
link to geodatabase and assessment table
link to species info
link to habitat info

500+ references compiled as of April 2009. Initial emphasis on regional synoptic assessments, local assessments and conservation plans.

Web-based application: bibliographic query scenario

http://www8.nos.noaa.gov/bhv/spatbibquery.aspx

Text-box query by region, zone, state, or waterbody -

within "Benthic Habitat Viewer app)

Output: All reference documents pertaining to a certain place

Other Sessile Fauna Mid-Atlantic NH CDA South Atlantic Federal Waters Science Plan © Grid Output C Excel Download Guid Output C Excel Download Excel Download Science Plan Science Plan Title Year Authors Organization Publication Habitat Information Web Location Bay Barometer - A Health and Restoration Assessment of the Chesapeake Bay and Watershed in 2008 2009 CBP Chesapeake Bay Program CBP/TRS 293- 09 EPA-903-R- 09 EPA-903-R- 09 UPA-903-R- 09 UPA-903-R- 09 UPA-903-R- 09 UPA-903-R- 09 UPA-903-R- 00 UPA Estuarine Habitat Waters Click Here Buzzards Bay NEP GIS Data Exclusives 2009 Buzzards Bay NEP Buzzards Bay National Estuary Program Buzzards Bay National Estuary Program Estuarine Habitat Data Waters Click Here Guif of Maine and Restoration 2009 The White House The White House Office of the Press Secretary Estuarine Conservation Waters Estuarine Valers Click Here Guif of Maine Council on the Ravine Environment Guif of Maine Council on the Ravine Environment Guif of Maine Council on the Ravine Environment Estuarine Valers Plan Click Here Outfiel Maine Low Restrictions Guif of Maine Environment Guif of Maine Environment Estuarine Val	Habitat Type Re	egion		State	Zone		Water Body			Information Type
QueryTitleYearAuthorsOrganizationPublication InfoHabitat TypeInformation TypeWeb LocationBay Barometer - A Health and Restoration Assessment of the Chesapeake Bay and Watershed in 20082009CBPChesapeake Bay ProgramCBP/TRS 293- 09 EPA-903.R 2009Estuarine ProgramHabitat Waters D9-001 March 2009Habitat CBP/TRS 293- 09 EPA-903.R D9-001 March 2009Estuarine VatersHabitat AssessmentClick HereBuzzards Bay Buzzards Bay NEPBuzzards Bay NEPBuzzards Bay ProgramBuzzards Bay ProgramEstuarine ProgramHabitat Data Estuarine ProgramClick HereExecutive Order - Chesapeake Bay Protection and Restoration2009The White HouseThe White Houses SecretaryThe White Houses SecretaryEstuarine ProgramCanservation WatersClick HereGulf of Maine EnvironmentGulf of Maine EnvironmentGulf of Maine RestorationGulf of Maine RestorationEstuarine ProgramLosservation PlanClick HereGulf of Maine EnvironmentGulf of Maine Council on the Marine EnvironmentGulf of Maine Council on the Marine EnvironmentEstuarine RestorationLosservation WatersClick HereGulf of Maine Council on the Marine Council on the Council on	Macroalgae N Marine Waters S	North Atlantic South Florida	×	NC MA	Estuarine EDA	•	Elk/Sassafras St. Andrew/St.	Rivers EDA Simons Sounds	•	Habitat Data Species/Habitat Association
InteYearAuthorsOrganizationInfoTypeTypeLocationBay Barometer - A Health and Restoration Assessment of the Chesapeake Bay and Watershed in 20082009CBPChesapeake Bay ProgramCBP/TRS 293- 09 EPA-903R- 2009CBP/RS 293- 09-001 March 2009Estuarine HabitatHabitat Click HereBuzzards Bay NEP GIS Data Exclusives2009Buzzards Bay NEPBuzzards Bay NEPBuzzards Bay NepBuzzards Bay NepBuzzards Bay NepEstuarine ProgramEstuarine WatersHabitat DataClick HereBuzzards Gay NepThe White HouseThe White House Office of the Press SecretaryEstuarine ProgramEstuarine 										
Bay Barometer - A Health and Restoration Watershed in 20082009CBPChesapeake Bay Program09 EPA-903-R. 09-001 March 2009Estuarine WatersHabitat AssessmentClick HereBuzzards Bay NEP GIS Data Exclusives2009Buzzards Bay NEPBuzzards Bay NEPBuzzards Bay NEPBuzzards Bay NePBuzzards Bay NePBuzzards Bay National Estuary ProgramEstuary ProgramEstuarine WatersHabitat DataClick HereExecutive Order - Chesapeake Bay Protection and Restoration2009The White HouseThe White House- Office of the Press SecretaryThe White House - Office of the Press SecretaryEstuarine HabitatClick HereGulf of Maine Amine - Tidal Restrictions Atlas2009Gulf of Maine Council on the Marine EnvironmentGulf of Maine RestorationEstuarine HabitatHabitat Data WatersClick HereCulf of Maine Marine EnvironmentGulf of Maine Council on the Marine EnvironmentGulf of Maine Council on the Marine EnvironmentGulf of Maine Restoration Marine EnvironmentClick Here ScretaryClick HereCulf of Maine Marine Council on the Marine Council on the Council on the <th>Title</th> <th>Yea</th> <th>r Authors</th> <th>Organization</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Title	Yea	r Authors	Organization						
Buzzards Bay NEP GIS Data Exclusives 2009 Buzzards Bay NEP National Estuary Program National Estuary Program Estuarine Waters Habitat Data Click Here Executive Order - Chesapeake Bay Protection and Restoration 2009 The White House Office of the Press Secretary The White House Office of the Press Secretary The White House Office of the Press Secretary Estuarine Habitat Data Click Here Gulf of Maine - Tidal Restrictions Atlas 2009 Gulf of Maine Environment Estuarine Habitat Habitat Data Click Here	Assessment of the Chesapeake Bay		9 CBP		09 EPA-903-R- 09-001 March			Click Here		
Executive Order - Chesapeake Bay Protection and Restoration 2009 The White House The White Office of the Press Secretary House - Office of the Press Secretary Estuarine Maine Conservation Plan Click Here Gulf of Maine - Tidal Restrictions Atlas 2009 Gulf of Maine Environment Estuarine Habitat Estuarine Waters Habitat Data Click Here	Buzzards Bay NEP GIS Data Exclus	sives 200		National Estuary	National Estuary	Estuarine Waters	Habitat Data	Click Here		
Gulf of Maine - Tidal Restrictions Atlas Gulf of Maine Council on the Arrine Environment Gulf of Maine Council on the Council on	Executive Order - Chesapeake Bay I and Restoration	Protection 200		Office of the Press	House - Office of the Press			Click Here		
Culf of Maine Habitat Destauration Web Partel 2000 Council on the Council on the Habitat Estuarine Habitat Data Click Hare	Gulf of Maine - Tidal Restrictions Atl	las 200	Council on the Marine	Council on the Marine	Habitat Restoration Web Portal - Tidal Restrictions		Habitat Data	<u>Click Here</u>		
Environment Environment Web Portal	Gulf of Maine Habitat Restoration W	eb Portal 200	Ocuncil on the Marine	Council on the Marine	Habitat Restoration	Estuarine Waters	Habitat Data	Click Here		

Gulf of Maine

Web-based application: summarizing assessment info

http://www8.nos.noaa.gov/bhv/spatbibassessment.aspx

Map or text-box based query for an individual waterbody. Output: Assessment information (indicators, threats, actions) for the location.

Estuarine Waters	Mid-Atlantic	Barnegat Bay	Indicator
Macroalgae	South Atlantic	Barnegat Bay EDA	C Threat
Marine Waters	All Regions	Buzzards Bay	. C Action
Other Sessile Fauna	▼ North Atlantic ▼	Buzzards Bay EDA	T
a		GridView € GridView	CAIL
Run Query		C Excel Export	

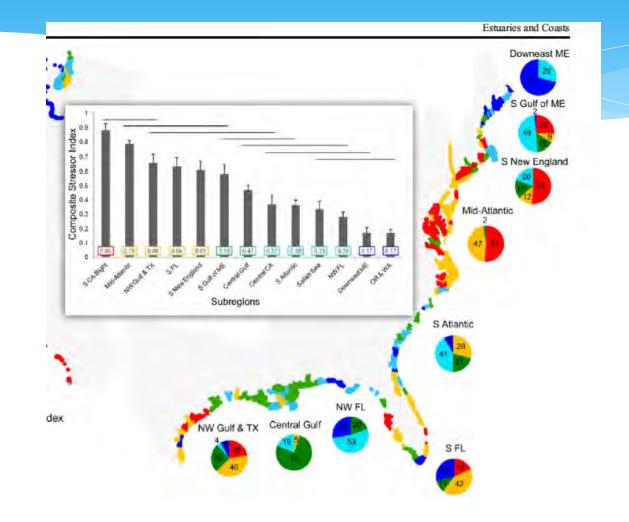
Title	Habitat Type	Waterbody Name	Parameter	Value	Parameter Type
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Overall Eutrophic Condition	high	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Chlorophyll a - Overall Expression	high	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Dissolved Oxygen - Overall Expression	no problem	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Secchi Depth - Overall Expression	unknown	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Macroalgae - Overall Expression	high	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Algal Blooms - Overall Expression	high	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Eutrophication - Impact to SAV	moderate	indicator
Effects of Nutrient Enrichment in the Nation's Estuaries: A Decade of Change	Estuarine Waters	Barnegat Bay	Eutrophication - Impact to Living Resources	considerably	indicator
National Estuary Program - Coastal Condition Report	Estuarine Waters	Barnegat Bay	Water Quality Index	4 = Good/Fair	indicator
National Estuary Program - Coastal Condition Report	Estuarine Waters	Barnegat Bay	Sediment Quality Index	4 = Good/Fair	indicator
National Estuary Program - Coastal Condition Report	Estuarine Waters	Barnegat Bay	Benthic Index	3 = Fair	indicator
National Estuary Program - Coastal Condition Report	Estuarine Waters	Barnegat Bay	Fish Tissue Contaminants Index	3 = Fair	indicator

Capturing Assessment Information

Subset of assessment information (indicator, threat, action) as reported for one waterbody (Delaware Bay) from several sources. Information is linked to the bibliographic table via Reference Number, and to the base map via Waterbody Number. Reference documents: Bricker et al. 2007. EPA 2006. Kimbrough et al. 2008

Waterbody Name	Reference Number	Waterbody	Indicator/Threat/Action	Parameter	
		Number			Value
Delaware Bay	152	26	indicator	Water Quality Index	1 = Poor
Delaware Bay	143	26	indicator	Overall Eutrophic Condition	moderate
Delaware Bay	143	26	indicator	Chlorophyll a - Overall Expression	high
Delaware Bay	143	26	indicator	Dissolved Oxygen - Overall Expression	low
Delaware Bay	143	26	indicator	Secchi Depth - Overall Expression	high
Delaware Bay	143	26	indicator	Macroalgae - Overall Expression	no problem
Delaware Bay	143	26	indicator	Algal Blooms - Overall Expression	no problem
Delaware Bay	143	26	indicator	Eutrophication - Impact to SAV	no problem
Delaware Bay	143	26	indicator	Eutrophication - Impact to Living Resources	no impact
Delaware Bay	152	26	indicator	Sediment Quality Index	4 = Good/Fair
Delaware Bay	152	26	indicator	Benthic Index	1 = Poor
Delaware Bay	152	26	indicator	Fish Tissue Contaminants Index	1 = Poor
Delaware Bay	152	26	indicator	Dissolved Inorganic Nitrogen (DIN)	Poor
Delaware Bay	152	26	indicator	Dissolved Inorganic Phosphorus (DIP)	Fair
Delaware Bay	152	26	indicator	Chlorophyll a	Fair
Delaware Bay	152	26	indicator	Water Clarity	Fair
Delaware Bay	152	26	indicator	Dissolved Oxygen	Good
Delaware Bay	152	26	indicator	Sediment Toxicity	Poor
Delaware Bay	152	26	indicator	Sediment Contamination	Good
Delaware Bay	152	26	indicator	Sediment Total Organic Carbon (TOC)	Good
Delaware Bay	152	26	indicator	Overall Condition	1.75 = Poor/Fair
Delaware Bay	157	26	indicator	Contaminants - Metals Status in Oysters	Medium
Delaware Bay	157	26	indicator	Contaminants - Metals Trends in Oysters	Stable
Delaware Bay	157	26	indicator	Contaminants - Organics Status in Oysters	Low
Delaware Bay	157	26	indicator	Contaminants - Organics Trends in Oysters	Stable

ACFHP Science/Data Decisions: Day 1


- * Updating the Assessment of Existing Information
- We will separate the South Atlantic and South Florida data.
- We will ask the Steering Committee if they need an update for the next Conservation Strategic Plan (2017-2021).
- Add current climate change information, marine spatial planning data portals and landscape conservation tool references as necessary.
- We will remove the bibliographic links (users can google the title, year, and agency to find the documents.
- We are considering removing the spatial tool, as doesn't work consistently.
- Subgroup: Moe will work with Mike Johnson and Jon Hare (Caroly and Lisa H. will assist as needed).

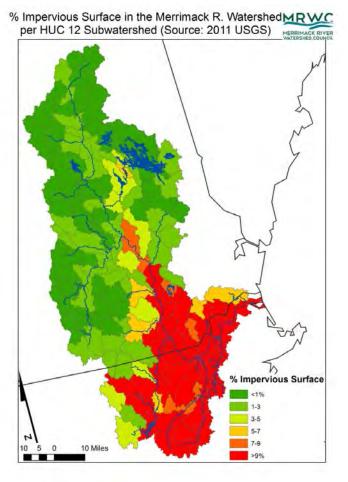
Overview of Habitat Needs: What do We Want?

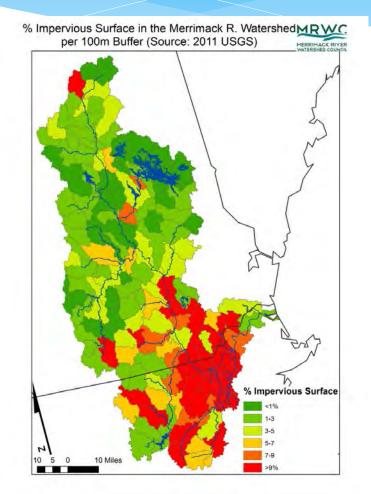
NOTES ON ACFHP HABITAT PRIORITY ASSESSMENT

ACFHP's SPECIES OF CONCERN	THREATS	INDICATORS	PRESENCE/ ABSENCE DATA	HABITAT MAPS/ HABITAT PRIORITIES
1	POSSIBLE	POSSIBLE	POSSIBLE	POSSIBLE
1. Diadromous Fish	TNC NE/SE Connectivity (dams only)	NALCC Dec Support Tool (based on TNC work)	NALCC Dec Support Tool (based on TNC work)	NALCC Dec Support Tool (based on TNC work)
2. Estuarine Fish	NFHAP Greene et al. '14	NFHAP Greene et al. '14		Could be reflective of threat map?
3. Coastal Component for Marine Fish Spp.	EPA: CCAP?			NOAA: ESI
	OTHER POSSIBILITIES	OTHER POSSIBILITIES	OTHER POSSIBILITIES	OTHER POSSIBILITIES
	USGS Coastal Vulnerability Index NOAA Eutrophication NOAA CCAP EPA Coastal Condition Report NROC/MARCO		AquaMaps (FishBase) TNC NAM-ERA OBIS Seagrass.net NROC/MARCO	NALCC TNC NAM-ERA Seagrass.net NROC/MARCO EPA ESI maps

NFHAP Estuarine Stressors Map

Greene et al. '14


Indicators


Mapping the Indicator Information in ArcGIS:

Overall Eutrophic Condition for 64 U.S. Atlantic coastal estuaries (Bricker et al. 2007)

Parameters available: Overall Eutrophic Condition Chlorophyll a - Overall Expression Algal Blooms - Overall Expression Dissolved Oxygen - Overall Expression Eutrophication - Impact to Living Resources Eutrophication - Impact to SAV Macroalgae - Overall Expression Secchi Depth - Overall Expression

Example of Co-Occurrence Scoring: MRWC: Imp. Surface %s in the Watershed and 100m Buffer

Current Scoring

#	Name		Restoration (R)?	ImpSurf(b)	ImpSurf(f)	303(d)	Phosphorus	Nitrogen	2015- 2025	R&E Sp.	ORW (MA); Designated Rivers (NH)	Cold Water Fishes (Brook Trout)	Important Forest Blocks	Forest Importance to Surface Drinking Water	Surface Drinking	TNC Freshwater Resilience	SPNHF Tier 1	Score
-	•	-	•	-	•	-	•	•	•	•	•	-	•	•		·	_	-+L
	South Branch Piscataquog R	NH		3.4	1	10	0	10	10	10	10	6	5	7.5	7.5	10	5	91.0
	Merrimack River Drainage	NH	-	3.2	8.1	10	10	10	0	10	7.5	3	0	2.5	0	10	5	68.0
		NH/MA	4	4	6.1	15	0	10	0	10	10	3	0	2.5	0	0	10	60.5
	Hancock Brook	NH		4.1	1	0	10	10	10	0	0	6	10	0	0	10	-	56.0
	Sand Brook	NH		3.6	2.2	0	0	10	10	0	7.5	3	5	5	5	10	0	55.5
	Lower Piscataquog River	NH	R	6.1	6.6	10	0	10	5	0	5	3	0	5	0	10	5	53.0
	Plymouth/Ashland Tribs	NH		3.1	2.8	10	0	0	5	0	7.5	6	5	7.5	0	10	-	51.0
	Squannacook River	MA		3.4	3.6	10	0	10	0	0	10	6	0	2.5	0	10	0	48.5
	Lower Suncook River	NH		3.4	2	0	0	10	0	10	0	3	0	2.5	0	10	10	45.5
	Little Suncook River	NH		3.7	1.4	10	0	10	0	0	0	3	0	7.5	0	10	5	45.5
	Contoocook River Mouth	NH	R	5.7	3	0	0	10	0	0	7.5	3	0	5	0	10	10	45.5
	Hop Dam to Blackwater R	NH		4	3	0	0	10	0	0	7.5	3	5	5	0	10	5	45.5
	Lower Warner River	NH	R	6.2	1.5	10	0	0	0	0	0	3	5	7.5	0	10	10	45.5
	Arlington Mill Reservoir	NH		6.7	6.1	10	0	10	0	10	0	0	0	2.5	0	0	10	42.5
	Andrew Brook	NH		3.6	0.6	0	0	0	5	0	0	6	0	10	10	10	-	41.0
128	Temple Brook	NH	R	5.1	1.6	10	0	0	0	0	7.5	3	0	7.5	7.5	0	5	40.5
72	Hopkinton Lake	NH		4.2	2	10	0	0	0	0	7.5	3	0	5	0	10	5	40.5
1	Assabet-Eliz Br to m	MA	R	7.3	8.4	10	10	10	5	0	0	3	0	0	0	0	0	38.0
35	Whitman River	MA	R	6.5	4.7	10	10	10	0	0	0	3	0	2.5	0	0	0	35.5
16	Nashua-Cata to Squanna	MA	R	5.5	9.2	10	10	10	0	0	0	3	0	0	0	0	0	33.0
66	Great Brook-Antrim Tribs	NH		3.2	1.4	0	0	0	0	0	7.5	3	5	7.5	10	0	0	33.0
125	Stony Brook - NH	NH		4.4	0.8	0	0	0	0	0	0	3	5	7.5	10	0	5	30.5
143	Winnisquam Lake	NH		3.1	3.5	10	0	10	5	0	0	3	0	2.5	0	0	-	30.5
42	Baboosic Brook	NH		3.6	4.6	10	0	0	5	10	0	3	0	2.5	0	0	0	30.5
65	Glover Brook	NH		4.4	1.7	0	0	0	5	0	0	9	5	0	0	10	-	29.0
6	Golden Brook	NH		5	8.9	0	0	10	0	10	0	0	0	2.5	0	0	5	27.5
48	Black Brook	NH		3.2	2.2	0	0	0	5	0	0	3	0	7.5	0	0	10	25.5
122	Squam River	NH	R	5.4	1.2	0	0	0	0	0	0	3	0	7.5	5	10	-	25.5
141	Wentworth-Warren Tribs	NH		4.1	0.5	0	0	0	0	0	0	6	0	0	0	10	-	16.0
85	Mad River	NH		3.4	0.7	0	0	0	0	0	0	6	5	0	0	0	-	11.0

Threats

Top three classified threats by zone and region, based on instances within Assessment Table (n=1260)

Region / Zone	Watersheds	Estuaries	Marine (S+F)
North Atlantic	Dams and Passage (37)	Water Quality (55)	Dredging Issues (13)
	Water Quality (28)	Contaminants (23)	Climate Change (11)
	Water Withdrawals (14)	Dredging Issues (16)	Fishing Gear (8)
Mid-Atlantic	Dams and Passage (32)	Water Quality (70)	Climate Change (23)
	Impervious Surfaces (25)	Contaminants (28)	Fishing Gear (11)
	Water Quality (16)	Invasive Species (19)	Dredging Issues (9)
South Atlantic + South Florida	•	Water Quality (40) Fishing Gear (31) Dredging Issues (26)	Climate Change (18) Fishing Gear (12) Dredging Issues (4) Boating Issues (4)

Threats and Actions

Top three classified threats and actions combined, based on a tally of instances

Nİ	Region / Zone	Watersheds	Estuaries	Marine (State+Federal)
		Threats:	Threats:	Threats:
		Dams and Passage (37)	Water Quality (55)	Dredging Issues (13)
		Water Quality (28)	Contaminants (23)	Climate Change (11)
	North Atlantic	Water Withdrawals (14)	Dredging Issues (16)	Fishing Gear (8)
		Actions:	Actions:	Actions:
		Improve Fish Passage (38)	Wetlands - Protect and Restore (38)	Area Designation (15)
		Watersheds - Conserve and Restore (24)	Area Designation (27)	Wetlands - Protect and Restore (7)
		Riparian Buffers - Conserve and Restore (21)	Monitoring and Assessment (25)	Monitoring and Assessment (7)
		Threats:	Threats:	Threats:
		Dams and Passage (32)	Water Quality (70)	Climate Change (23)
		Impervious Surfaces (25)		Fishing Gear (11)
	Mid-Atlantic	Water Quality (16)	Invasive Species (19)	Dredging Issues (9)
		Actions:		Actions:
		Riparian Buffers - Conserve and Restore (55)		Area Designation (33)
		Water Quality - Protect and Restore (45)	Water Quality - Protect and Restore (60)	Monitoring and Assessment (28)
L		Improve Fish Passage (30)	SAV - Protect and Restore (59)	Fishery Regulation (12)
		Threats:	Threats:	Threats:
		Dams and Passage (31)	Water Quality (40)	Climate Change (18)
	South Atlantic +	Impervious Surfaces (17)	Fishing Gear (31)	Fishing Gear (12)
	South Florida	Water Quality (7)	Dredging Issues (26)	Dredging Issues (4), Boating Issues (4
		Actions:	Actions:	Actions:
		Improve Fish Passage (29)	Area Designation (55)	Area Designation (59)
		Area Designation (28)	Fishery Regulation (33)	Fishery Regulation (12)
		Conserve Species (13)	Dredging Regulation (15)	Monitoring and Assessment (7)

Threats

Dams and Passage Water Quality/Quantity (imp surfaces, withdrawal (303d) Dredging Climate Change Contaminants (EPA CCR, Mussel Watch, Superfund sites) Fishing Gear on bottom habitat (derelict, active) Moe Invasive Species

Actions

- Improve fish passage
- Protect and Restore Wetlands
- Protect and Restore Riparian Buffers
- Protect and Restore SAV (TNC SAV maps and prioritization, Ches. Bay, Ind. R. lagoon, TNC LIS?, check with Lisa)
- Restore bottom habitat rivers (Ask NALCC/SALCC funds, are maps of James River (VIMS/USGS, Ches. Bay)
- Restore hydrological function (water quality/quantity, e.g., watershed lands/improve land use practices, etc.)
- Protect and restore shellfish beds
- Protect and restore hard bottom habitats
- Incorporate Climate Change Resilience considerations NOW

NEXT STEPS

ADD MATRIX DATA TO WEBSITE : 3 mos: Sept-Dec. 2015 UPDATE ASSESSMENT OF EXISTING INFORMATION: Moe: Sept – Dec. 2015 ADD MATRIX MAPS

HABITAT PRIORITIZATION

- * Compile the maps: Caroly/Moe/Lisa
- * ID subgroups for separate priorities
- Subgroups develop priority scoring method or agree to use existing prioritizations
- * Price the cost of adding mapping of riverine habitat types to TNC's existing stream classification (or other) by end of January.
- * Reconvene 2-day workshop February 2016
- Consider the use of focal species (migratory we have; coastal consider/review TNC priorities, estuarine focal – <u>we need ACFHP</u> <u>subgroup</u>. Check out NOAA's Gulf of Mexico modeling coastal/estuarine modeling.
- * Review at in-person **Spring 2016** Meeting ACHFP Science and Data Committee
- * Vet priorities through ACFHP Steering Committee
- * Desired output:
 - * Priority maps wetland habitats, SAV habitats, etc.

RECOMMENDATIONS

- * Sci and Data Committee recommends funding for ACFHP GIS person and analysis (person or time)
- Revisit discrepancy between matrix priority habitats and ACFHP priorities during next Conservation Strategic Plan review.

North Atlantic Estuarine

Threats: Water Quality Contaminants Dredging Issues

Actions: Wetlands – Protect and Restore[Look at how joint ventures are prioritizing wetlands, Chesapeake Habitat map, consider regional map(s) of stressors (NFHP, break into stressors)), EPA Coastal Condition report, TNC's Coastal Data and prioritization]

North Atlantic Riverine

Threats: Dams and Passage

Water Quality/Water Withdrawal **should change to water hydrology/flashiness

Actions: Improve Fish Passage [TNC connectivity maps (NEACC, NAACC)]. Consider Dauwalter (TU). Watersheds Riparian Buffers

North Atlantic Coastal

Threats: Dredging Issues (? Do we want to revisit this threat?) Marine cadastre ocean disposal sites, sand mining (ACOE?) Climate Change Fishing Gear

Actions: Area Designation (e.g., EFH, HAPC, NERRs, MPAs, state protected areas) – ignore, not approp for ACFHP

Wetlands – Protect and Restore

Mid Atlantic Riverine

Threats: Dams and Passage (see N Atl) Impervious Surface Water Quality

Actions: **Riparian Buffers (Conserve & Restore):** Impervious surface data by watershed and river buffer, Appalachian LCC riparian tool for local prioritization)

Water Quality (Protect & Restore) Improve Fish Passage [TNC connectivity maps (NEACC, NAACC, CCAP)]

Threats: Water Quality Contaminants Invasive Species

Actions: **Control Invasive Species** [Lisa M. will check, distribution of phragmites maps available, which invasive species do we pay attention to?]

Water Quality SAV

Mid-Atlantic Coastal

Threats: Climate Change (incl. acidification). NOAA (Moe et al.), SERC, Caroly will check maps ? Fishing Gear Dredging Issues

Actions: Area Designation (ignore) Monitoring and Assessment Fishery Regulation South Atlantic/South Florida Riverine Threats: Dams and Passage Impervious Surfaces SFLA: Water Quality

Actions: Improve Fish Passage Area Designation Conserve Species

*Water quality and quantity (altered hydrology) most important for SoFla, not fish passage South Atlantic/South Florida Estuarine Threats: Water Quality Fishing Gear Dredging Issues

Actions: Area Designation Fishery Regulation Dredging Regulation *New action for SoFla to address

*New action for SoFla to address water quality: TMDLs in bays to help improve H2O quality, CERP (comprehensive everglades restoration plan), our Florida reefs program summarized threats from Martin County to Dade South Atlantic/South Florida Coastal Threats: Climate Change Fishing Gear Dredging Issues, Boating Issues

Actions: Area Designation

Fishery Regulation Monitoring and Assessment

ACFHP Conservation Strategic Plan November 5, 2015

PURPOSE

- Broad coast-wide strategy for determining and addressing the threats affecting habitats important for all life stages of Atlantic coast diadromous, estuarine-dependent, and coastal species.
- Designed to address actions that the Partnership can take to improve the condition of Atlantic coast fish habitats over the next five years...

ACFHP CONSERVATION STRATEGIC PLAN

MISSION

To accelerate the conservation, protection, restoration, and enhancement of habitat for native Atlantic coastal, estuarine dependent, and diadromous fishes through partnerships between federal, tribal, state, local, and other entities.

VISION

Healthy, thriving habitats of sufficient quantity and quality to support all life stages of Atlantic coastal, estuarine-dependent, and diadromous fishes

Geographic Profile

Partnership Boundary Geographic Range Maine to the Florida Keys Inland Extent Headwaters of coastal rivers Marine Extent Offshore to the edge of the continental shelf

Subregion Boundaries

ACFHP utilizes subregional boundaries for the purposes of habitat prioritization. Subregions represent ecologically distinct units and were derived from Marine Ecoregions of the World (as established by the World Wildlife Fund and The Nature Conservancy). These include the Gulf of Maine, Virginian, Carolinian, and Floridian ecoregions which correspond to ACFHP subregions North Atlantic, Mid-Atlantic, South Atlantic, and South Florida. respectively. While these subregions are unique to ACFHP, the Partnership will work collaboratively with the appropriate partners to ensure optimal success.

4

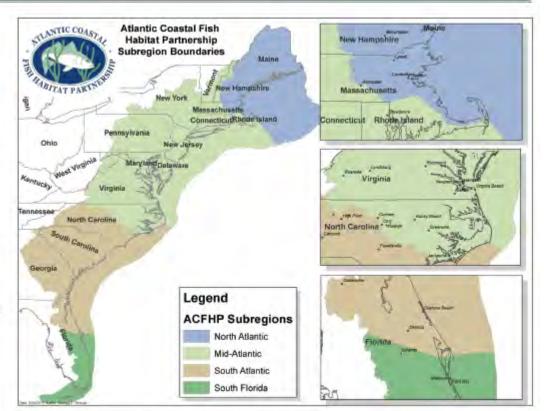
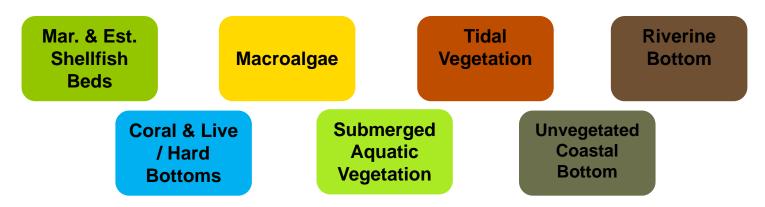


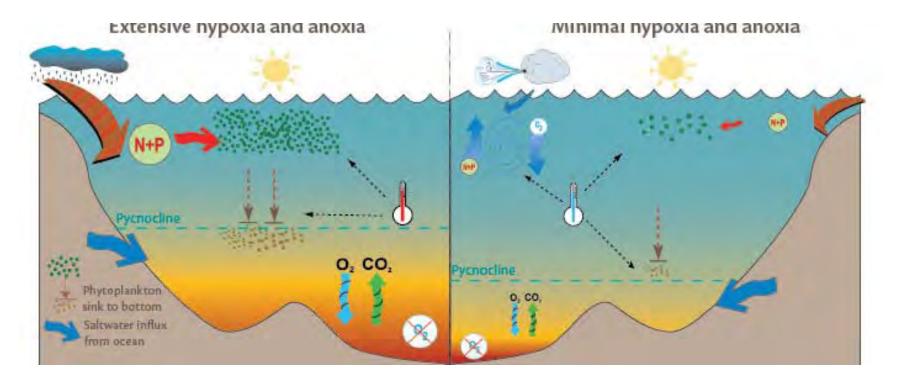
Figure 1. Atlantic Coastal Fish Habitat Partnership and Subregion Boundaries



PRIORITY HABITATS

PRIORITY HABITATS

- 7 broad habitat categories
- 25 specific habitat types
- Reflects early drafts of the Species-Habitat Matrix


PRIORITY HABITATS BY SUBREGION*

7 *Informed by the **Species-Habitat Matrix**

PRIORITY THREATS

PRIORITY THREATS*

- Obstructions to Fish Movement
- Dredging and Coastal Maintenance
- Water Quality Degradation and Eutrophication
- Consumptive Water Withdrawal

9

- Sedimentation
- Vessel Operation Impacts
- Contamination of Water (ground and surface) and Sediment
- Invasive Species
- Climate Change
- Other Threats

*Verified by the results of the Assessment of Existing Habitat Information

PRIORITY THREATS

Assessment Classified Threat	# of Instances	ACFHP Priority Threat		
Water Quality	225	Water Quality Degradation and Eutrophication; Climate Change; Consumptive Water Withdrawal		
Dams & Passage	106	Obstructions to Fish Movement/Habitat Connectivity		
Climate Change	97	Climate Change		
Dredging Issues	89	Dredging and Coastal Maintenance		
Contaminants	84	Contamination of Water (ground and surface) and Sediments		
Impervious Surfaces	64	Sedimentation		

GOALS & OBJECTIVES

GOALS*

- **Protect and maintain intact and healthy aquatic systems** for native Atlantic coastal, estuarine-dependent, and diadromous fishes.
- Prevent further degradation of fish habitats that have been adversely affected
- **Restore the quality and quantity of aquatic habitats** to improve the overall health of fish and other aquatic organisms (especially those habitats that play an important role in critical life history stages of fish species, e.g. nursery and spawning areas).
- Restore aquatic habitats to **aid in recovery of threatened or endangered species** (state and federal).
- Enhance the quality and quantity of aquatic habitats that support a broad natural diversity of fish and other aquatic species.

12 *Modeled after NFHAP goals

OBJECTIVES

- Considered the human drivers (indirect and direct) and the key opportunities to address Priority Threats.
- Assessed the constraints it must work within as well as its operational needs
- An overarching objective of protecting and restoring aquatic habitat, on a coast-wide scale.

OBJECTIVES

Protection objectives are proactive ... highlight the need to address priority threats that are adversely impacting aquatic habitats along the Atlantic coast *before the habitats are in need of restoration*.

Restoration objectives highlight the need to restore aquatic habitats along the Atlantic coast that have *already been impacted by various human activities*.

PROTECTION OBJECTIVE 4

 Minimize or reduce adverse impacts to Subregional Priority Habitats associated with coastal development and water dependent activities (e.g. recreational boating, and marine transportation).

THREATS

- 1. Vessel Operation Impacts;
- 2. Dredging and Coastal Maintenance;
- 3. Sedimentation

HABITATS

- 1. Marine and Estuarine Shellfish Beds;
- 2. Riverine Bottom;
- 3. Coral and Live/Hard Bottom;
- 4. SAV
- 5. Tidal Vegetation
- 6. Riverine Hard Bottonature

EVIDENCE

 Conservation moorings project replaced traditional chain moorings that scour surrounding eelgrass with elastic conservation moorings in order to *minimize impacts to the seafloor, enable restoration of 29 m^2 of eelgrass* & preserve habitat essential to critical life stages of trust species (HABITAT Submerged Aquatic Vegetation)

RESTORATION OBJECTIVE 1

 Restore and enhance hydrological or physical connections between Subregional Priority Habitats to promote fish utilization and improve overall aquatic health.

HABITATS

- 1. Marine and Estuarine Shellfish Beds;
- 2. Riverine Bottom;
- 3. Tidal Vegetation

EVIDENCE

- 1. The removal of Pond Lily Dam will *open 2.6 miles of the West River* and *76 acres of Konold's Pond* to spawning river herring. It will also improve water quality, decrease water temperature, and enhance riparian habitat (HABITAT: Riverine Bottom)
- 2. The Great Dam was removed on the Exeter/Squamscott River, connecting **8 miles of river**. Additionally, streambed enhancements in the form of a gravel shoal removal *increased viable spawning habitat in the area by 20,000 ft^2* (HABITAT: Riverine Bottom).
- 3. Shorey's Brook dam removal and replacement of a failing perched culvert (ME) restored connectivity to in-stream and upstream riverine and coastal inert substrata and riverbed integrity, including *800 ft of habitat for diadromous fish and opened 4.3 miles of river upstream* (HABITAT: Riverine Bottom).
- 4. Longbranch Creek Culvert project (SC) replaced undersized pipes with wider box culverts. Sediments were stabilized, upstream shorelines were enhanced, and improved tidal flow increased the vitality of the marshes and oyster reefs in the area (HABITATS: Marine and Estuarine Shellfish Beds and Tidal Vegetation).

18

RESTORATION OBJECTIVE 2

 Restore Subregional Priority Habitats, such as replanting eelgrass beds or restoring oyster beds, in locations where threats have been minimized or removed (does not include dam or other barrier removal)..

HABITATS

- 1. Marine and Estuarine Shellfish Beds
- 2. Coral and Live/Hard Bottom
- 3. Submerged Aquatic Vegetation
- 4. Tidal Vegetation
- 5. Riverine Bottom

EVIDENCE

- 1. Ashepo-Coosaw Cutoff Restoration project (SC) stabilized shoreline by *adding 0.06 acres of oyster habitat* to protect 100 m of shoreline, *creating 0.15 acres of adjacent tidal marsh* over time (HABITAT: Tidal Vegetation)
- 2. James River Atlantic Sturgeon project (VA) increased the spawning grounds of Atlantic sturgeon and other anadromous fish in the James River by constructing an artificial spawning reef using 2,500 tons of broken granite (HABITAT Riverine Bottom).
- 3. Lake Worth Lagoon project (FL) capped 30,000 yd^3 of muck sediments and restored **18.8 acres of seagrass** and **0.61 acres of mangroves**, plus planted an additional **1.5 acres of salt marsh**, **0.51 acres of tidal flat** *habitat*, and **0.93 acres of oyster/artificial reef habitat** (HABITAT: SAV and Tidal Vegetation/Mangroves)
- 4. Peconic Estuary project (NY) planted eelgrass and widgeon grass where historic beds used to thrive. This project will stabilize the sediment, provide fish habitat, and improve water clarity (HABITAT SAV).
- 5. Guana Peninsula project restored and enhanced fish habitat by preventing shoreline erosion and promoting shoreline accretion via the planting of mussel and oyster shells, and Spartina grass. It **restored over 1,000 feet of shoreline** and improved water quality (HABITATS: Marine and Estuarine Shellfish Beds, Tidal Vegetation).
- Indian River Lagoon invasives removal project (FL) removed 5 acres of invasive plants and planted over 8,500 linear ft of shoreline with native species such as mangroves and Spartina grass to create new fish nursery habitat. Mangroves will reduce erosion and filter stormwater runoff, improving conditions for seagrass
- (HABITATS: Mangroves and Submerged Aquatic Vegetation).

RESTORATION OBJECTIVE 4

 Maintain or increase the resiliency of Subregional Priority Habitats to the impacts of climate change through restoration activities.

HABITATS

- 1. Marine and Estuarine Shellfish Beds
- 2. Coral and Live/Hard Bottom
- 3. Submerged Aquatic Vegetation
- 4. Tidal Vegetation
- 5. Riverine Bottom

EVIDENCE

- 1. Could argue all restoration projects to-date have increased resiliency (?)
- 2. Not Available (?)

SCIENCE & DATA OBJECTIVES

- Support ongoing research related to identifying or assessing fish habitat conservation activities and the threats to fish habitats.
- 2. Work to achieve ACFHP science & data needs and fulfill science and data responsibilities for NFHAP.

EVIDENCE

- 1. Most of our progress in Science & Data has been to achieve ACFHP needs
- 2. Little support for research (?)

COMMUNICATIONS & OUTREACH OBJECTIVES

- 1. Develop or maintain physical or virtual information or avenues for communicating information to partners and the broader conservation community.
- 2. Develop or maintain relationships with partners and the broader conservation community.

adarts release subsective into the Response Rose. The Name Astarts Salese Exceedants Partnership has supported a printy of entricationed education property to help communities been along radius and these laberts.

LESSONS LEARNED

+/PLUS

\triangle /Change

(What were we good at? What did we get/guess right?)

(What would we change? Are there gaps?)

DISCUSSION

Implementation Task Update

Restoration Objective 2: Restore Subregional Priority Habitats, such as replanting eelgrass beds or restoring oyster beds, in locations where threats have been minimized or removed (does not include dam or other barrier removal).

B.2.1 Strategic Action: Restore Subregional Priority Habitats in each subregion where:

(a) they have been damaged or destroyed by past declines in water quality or human activities, such as dredging, filling, development, or vessel operation; AND

(b) conditions for restoration of habitats exist; AND

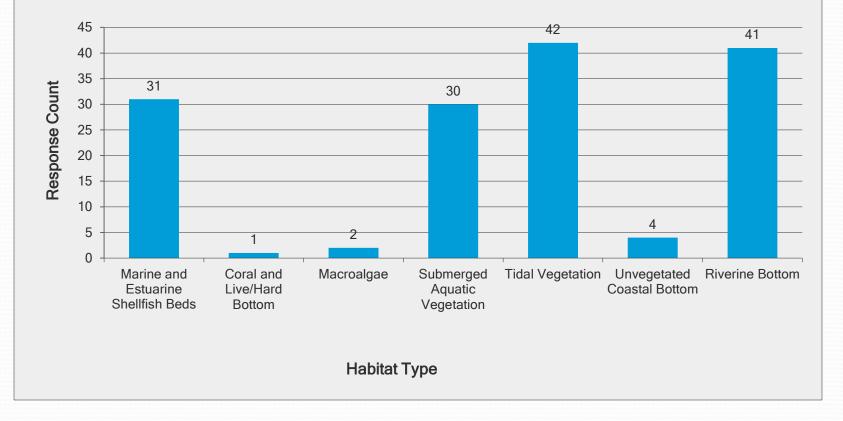
(c) goal(s) of habitat restoration can be maintained.

Tasks:

(1) Compile list of restoration partners/practitioners (e.g. NEPs, state management plans, NGO's, ACFHP MOU signatories, etc.)

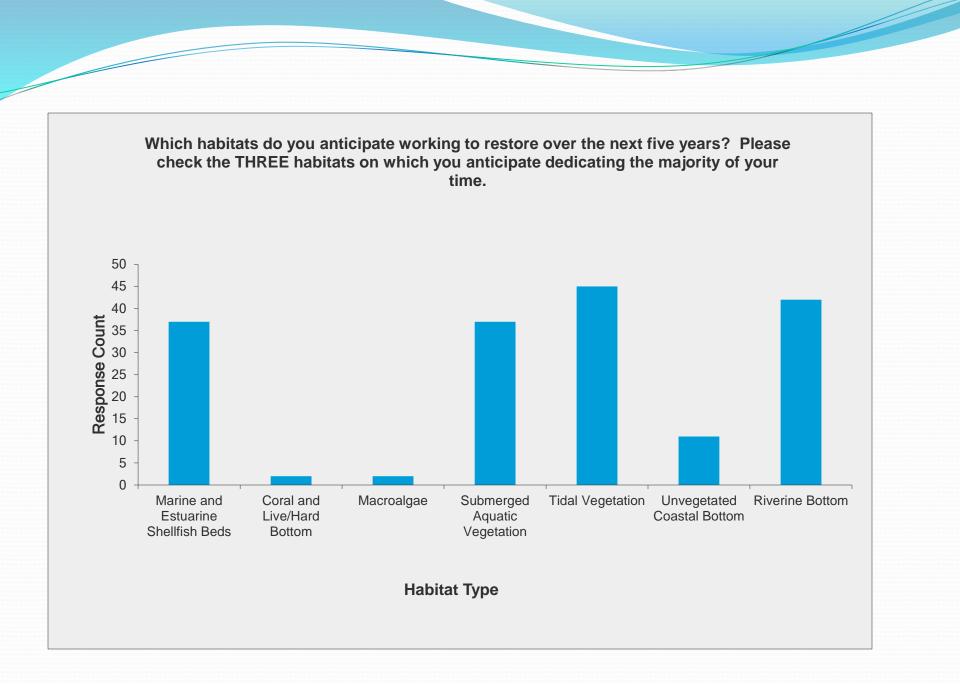
(2) Survey them regarding the focus and priorities in their planning area (e.g., priority habitats, priority threats, and priority implementation actions).

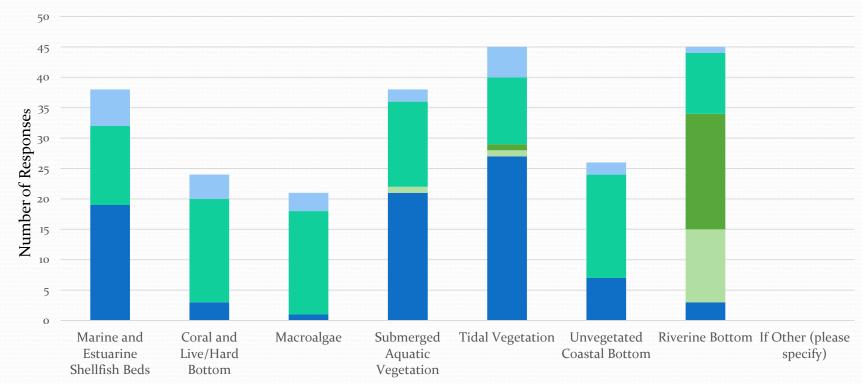
Why:


Assist strategic planning so as to steer the partnership toward gaps in habitat types in need of restoration, geographic areas in need of restoration and, significant threats not being addressed and partner goals.

Lead to a better understanding of priorities and ways to focus our efforts on a regional or coastal scale.

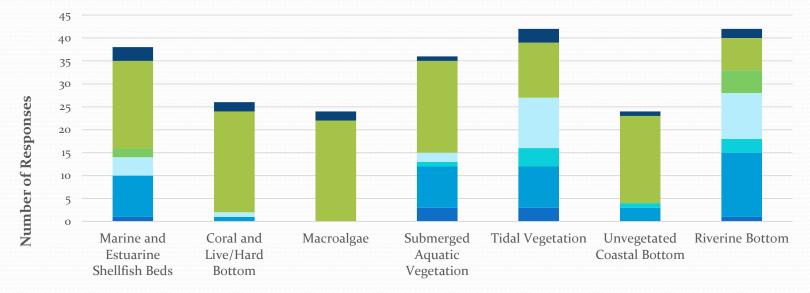
Status


- Gathered information from 261 restoration practitioners from 13 states
- Practitioners were contacted to participate in the survey in September and October of 2014.
- 81 responses (30% response rate).
- Draft report of results

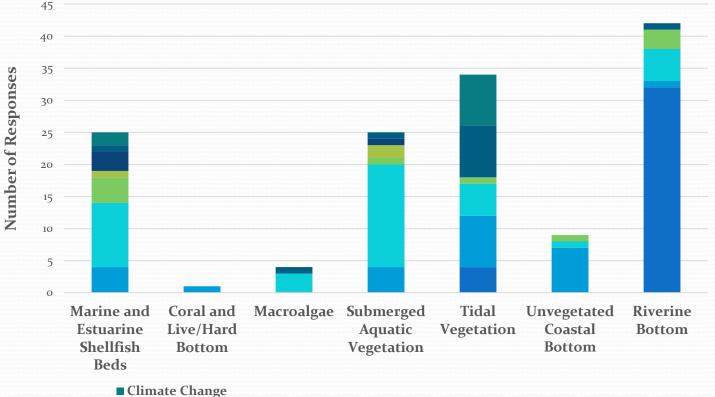

Which habitats are you currently working to restore? Please check the THREE habitats on which you currently dedicate the majority of your time.

Habitat Focus by Region

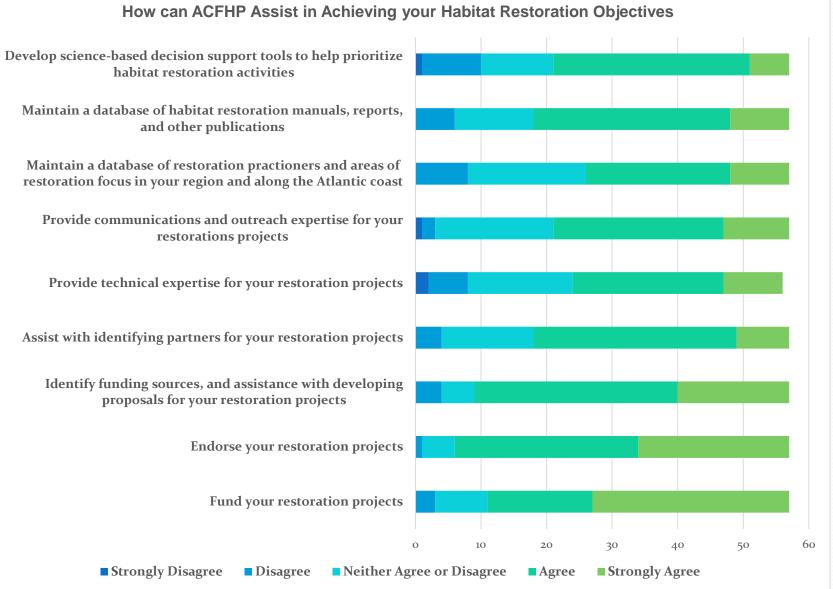
	Marine and Estuarine Shellfish Beds	Macroalgae	Submerged Aquatic vegetation	Tidal Vegetation	Unvegetated Coastal Bottom	Riverine Bottom
North Atlantic	2	1	7	7	1	п
Mid- Atlantic	10		11	14	2	19
South Atlantic	4			2		
Florida	3		3	4	1	3



Which Local, State, Regional or Federal Restoration Strategy or Goal are You Primarily seeking to Achieve


- Other (please specify below)
- Current restoration work is not guided by a local, state, regional, or federal goal or strategy
- # miles reconnected through fish passage by this date
- Remove or replace # of barriers by this date
- Restore or enhance # acres by this date

Progress Toward Meeting Goal or Strategy



- Other (please specify below)
- No current strategy or goal
- Will likely exceed goal or strategy
- On target to achieve to achieve the goal or strategy
- Currently behind, but likely to achieve the goal or strategy
- Likely to achieve a percentage of the goal or strategy
- Unlikely to achieve goal or strategy

Which Threats are you Focusing on for Each Habitat Type?

- ennace change
- Invasive Species
- Water Contamination (ground and surface) and Sediments
- Vessel Operation Impacts
- Sedimentation
- Consumptive Water Withdrawal
- Water Quality Degradation and Eutrophication
- Dredging and Coastal Maintenance
- Obstructions to Fish Movement/Habitat Connectivity

Assistance

.....

In your opinion, what are the particular habitats in need of restoration or threats in need of correction, explain.

Top three threats not currently being addressed were: fish passage, water quality, and sea level rise.

Top three habitats not being addressed were: buffers, salt marshes, and shellfish beds.

The question was worded such that responses could not be broken down by region. The question asked, "in your region or on a coast wide basis,"

What did this information tell us?

- We don't do a very good job of writing survey questions.
- Does the regional data generated help us prioritize focal habitat types? Will we talk about importance of buffers at some point?
- What are we doing about macroalgae and unvegetated coastal bottom, these are not common focal areas for restoration efforts. What about corals?
- Is the data about practitioners meeting their goals in this survey going to help ACFHP focus their efforts?
- It appears that practitioners are interested in specific types of assistance. Do we de-emphasize or not do some of them?
- Is ACFHP doing anything to address the focal threats of high priority (from this survey)?

* NFHP Funding for ACFHP projects

FY15 funded and FY16 proposed

Project Title	Funds Requested	Direct	Indirect	Partner Funds	Total Cost
Atlantic Coastal Fish Habitat Partnership Operations FY15	\$42,857	\$30,000	\$12,857	\$65,000	\$107,857
Renewing Diadromous Fish passage, Patten Stream, Surry, ME, NFHP ACFHP	\$78,987	\$55,291	\$23,696	\$179,972	\$258,959
Cotton Gin Mill Dam Removal and Fish Passage Project, Satucket River, East Bridgewater, MA	\$71,429	\$50,000	\$21,429	\$451,308	\$522,737
Cape Fear River Fisheries Enhancement Project	\$42,857	\$30,000	\$12,857	\$227,369	\$270,226
Total	\$236,130	\$165,291	\$70,839	\$923,649	\$1,159,779

ON-THE-GROUND PROJECTS

Spotlight on Renewing Diadromous Fish Passage in Patten Stream

NNTIC COAST

Project Partners Town of Surry Blue Hill Heritage Trust

was

nearly

who

Maine Department of Transportation

Maine Coastal Program

Maine Department of Naturay Resources

National Oceanic and Atmospheric Administration

> Gulf of Maine Council

US Fish and Wildlife Service

Atlantic Coastal Fish Habitat Partnership

The Upper Patten Stream a thriving commercial aley species. While many fact physical barrier of the Rou movement in the area. R upper drainage and is loca undersized, but cove channel in the bedrock historically used migrations. As Patten Stream's alewit extirpated. SIL mainly due to volu carry fish over olect Partners barriers in nets SO may reach spawning ha Cape Fear River

This project will restore to 20 stream miles and alewife spawning acres in Stream through the installa of a nature-like rock weir configuration of the rock w with higher flows that may Primary and secondary no

Southeast Aquatic Resources Partnership flows, and the modular des Martin Marietta Aggregates elevation if warranted.

National Atmospheri

and Oceanic

Dial Cordy and

US Fish and Wildlife

Service

Atiantic Coastal Fish

Habitat Partnership

FISH HABITAT

Species such as blueback t Atlantic salmon will also be and downstream freely.

The U.S. Fish and Wildlife Partnership with conserv project, including supplies Community events, schoo planned during the course

Project text provided by the Town of S

ON-THE-GROUND PROJECTS

Spotlight on Cape Fear River Fisheries Enhancement Project

The Cape Fear River was one of the most pro American shad in North Carolina at the beginning commercial landings are 87% lower than histori and reduced access to spawning habitat have be structures located between Wilmington and Fay completed rock arch ramp, allowing volitional fish

However, 70% of fish are unable to pass the Lock and Dam 2 barrier, and until fish passage is improved, habitat restoration downstream of the dam remains the priority Clean hardbottom habitats with interstitial spaces are preferred spawning habitat for many riverine and diadromous fish species. Unfortunately, much of this preferred habitat in the Cape Fear Lock and river is inaccessible and is buried placed apul under sediment from numerous natural and anthropogenic sources.

This project restored o.c acres of preferential spaw and sturgeon downstream of Lock and Dam 2, fac habitat between Lock and Dams 1 and 2. To compe historical spawning habitat due to fish passage bar rock were placed in the river, and monitored for sp Thirty volunteers directly assisted in the restoratio beginning and final substrate placements, which y shad and Atlantic and shortnose sturgeon, and ind spawning habitat for striped bass and river herring

The U.S. Fish and Wildlife Service provided Habitat Partnership with conservation dollars to fu biological monitoring as well as a side-scan sonar is stable. Both efforts are essential for ensuring th enhancement project.

Project level and photos provided by Cape Feer River Welch, Lock and Dam

For more information on the Partnership visit us

Project Partners

The Nature Conservancy

Massachusetts Division

of Ecological

Restoration

US Fich and Wildlife

Service

Atlantic Coastal Fish

Hapitat Partnership

ON-THE-GROUND PROJECTS Spotlight on Cotton Gin Mill Dam Removal and Fish Passage Project

The Cotton Gin Mill Dam in East Bridgewater. Massachusetts was built in the mid-1800's, and since then has blocked flow of the Satucket River. The dam has hindered natural river processes, such as sediment transport and temperature regulation. It also acts as a barrier to passage for diadromous fishes including river herring (Alosa pseudoharengus, A. aestivalis) and American eel (Anguilla rostrata).

The Nature Conservancy will work with partners to remove the dam, allowing fish access to 124 acres of spawning habitat, with potential for 528 more acres. It will also restore 4.4 river miles upstream. The dam currently blocks passage from Narragansett Bay to the river upstream and Robbins pond, both of which provide suitable nursery habitat for river herring.

Cotton Gin Mill Dam, looking upstream

The effectiveness of this project in restoring migratory fish passage will be measured in the short term through changes in the length of connected river network and in characteristics of physical habitat. Fish counts will be conducted for at least five years following removal, and the project team is collaborating with the Massachusetts Division of Marine Fisheries to conduct fish monitoring at other dam removal sites in the watershed.

Removing the Cotton Gin Mill Dam, restoring river processes in the Satucket River, and restoring riparian habitat will improve system health and resilience to stresses such as increased temperature and more intense storm events due to climate change. Increased habitat available to migratory fish will minimize the chance that stochastic events will wipe out all spawning or juvenile survival in a given year.

The U.S. Fish and Wildlife Service provided the Atlantic Coastal Fish Habitat Partnership with conservation dollars to fund a portion of the dam removal.

ect text and photo provided by The Nature Conservancy, Photos by Cathy Bosek.

For more information on the Partnership visit us at: www.atlanticfishhabitat.org

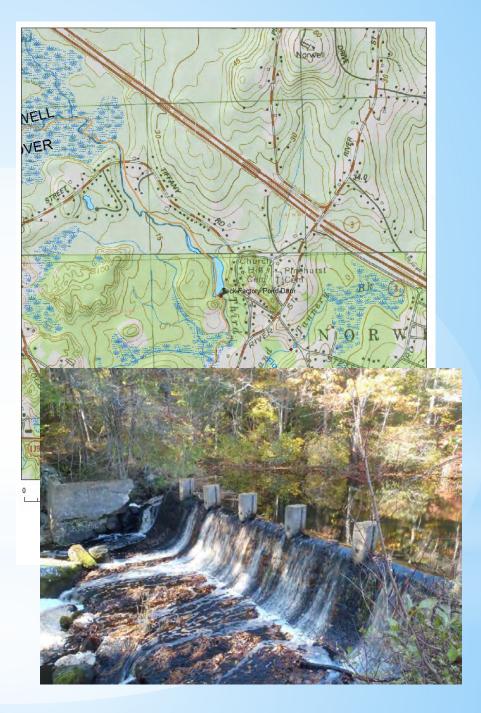
* FY16 Review of applications for NFHP funding

- *Changes in application and review process
 - *Coordination deadline 3 weeks before application deadline
 - *ACFHP is not soliciting research projects or feasibility, design, and engineering projects
 - *Living shoreline projects asked to demonstrate how it would benefit fish
 - *Test run on using tools
 - *Northeast Aquatic Connectivity, SEACAP, Ches Bay Habitat and Ches Bay Fish Passage

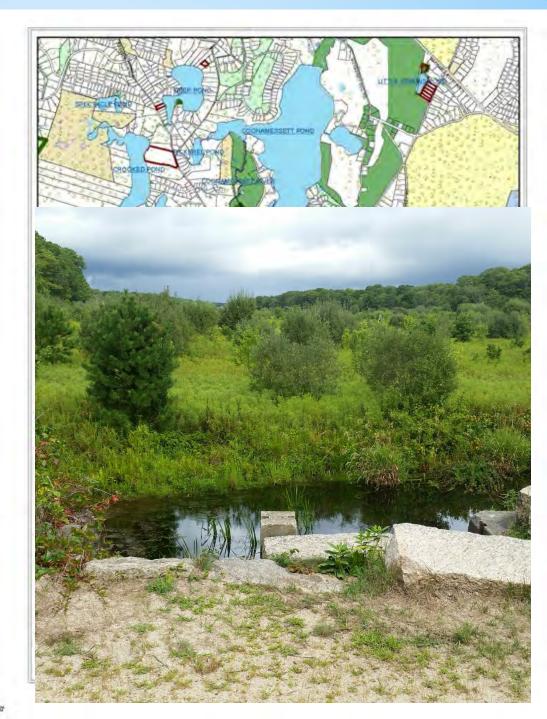

* FY16 Review of applications for NFHP funding

- *Review Team
 - * Mark Rousseau MA
 - * David O'Brien NOAA VA
 - * Kent Smith FL
 - * Jimmy Johnson NC
 - * Jaclyn Daly NOAA SC
 - * Dawn McReynolds NY
 - * Julie Devers USFWS MD

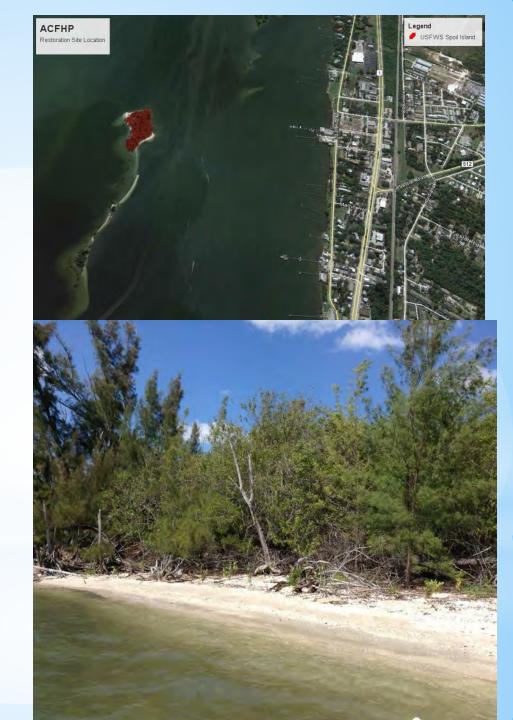
Average	Project Name	Sub- Region	Amount Requested	Total Cost of Project
score 187.9	Improving Fish Passage Through the Removal of the Bradford Dam, Pawcatuck River, RI	Mid- Atlantic	\$50,000	
187.6	Third Herring Brook Restoration, Tack Factory Dam Removal, MA	North Atlantic	\$50,000	\$413,000
184.2	Lower Bog Dam Removal and Stream Restoration, Coonamesset River, MA	Mid- Atlantic	\$50,000	\$290,000
	Restoring the Mangroves of the Three Sisters Island, Indian River Lagoon, FL	South Florida	\$49,960	\$101,175
146.4	Creation of Shellfish-based "Living Shoreline" for Fish Habitat Restoration and Water Quality Improvement in the Mid-Atlantic, NY	Mid- Atlantic	\$49,799	\$99,660
1 1/9 3	Fish Passage Restoration Project, Big Millpond, MD	Mid- Atlantic	\$50,000	\$175,000
117.5	Eelgrass Protection and Restoration, Fishers Island, NY	Mid- Atlantic	\$50,000	\$177,440
65.6	Saxis Pier Reef Project, VA	Mid- Atlantic	\$35,500	\$77,000


* Improving Fish Passage Through the Removal of the Bradford Dam, Pawcatuck River, RI

- Third of 6 mainstem dams
- Receiving Sandy Funding
- Questions:
 - Will it be a full dam removal or a nature like fishway?
 - Timeframe


*Third Herring Brook Restoration, Tack Factory Dam Removal, MA

- First barrier
- Tier 1 Northeast Aquatic Connectivity
- Questions:
 - How will you deal with low flow issues?
 - Upstream Dam
 - Funding


* Lower Bog Dam Removal and Stream Restoration, Coonamesset River, MA

- First Barrier
- Being taken out by the town
- Questions:
 - Funding
 - Timeframe

* Restoring the Mangroves of the Three Sisters Island, Indian River Lagoon, FL

- Pelican Island National Wildlife Refuge
- Brazilian Pepper Removal
- Mangrove Planting
- Questions:
 - Offshore water break
 - Funding for invasive removal through FWC
 - How will salary funds be used?

* Creation of Shellfishbased "Living Shoreline" for Fish Habitat Restoration and Water Quality Improvement in the Mid-Atlantic, NY

- Coir logs will be used to create a living shoreline
- Questions:
 - Will the coir logs work?
 - How will funding for personnel be use?

