Atlantic States Marine Fisheries Commission

American Shad Stock Assessment

Peer Review Report

March 1998

Atlantic States Marine Fisheries Commission

American Shad Stock Assessment
 Peer Review Report

PREFACE

This is a report of the Atlantic States Marine Fisheries Commission pursuant to U.S. Department of Commerce, National Oceanic and Atmospheric Administration Award Nos. NA87 FGO 025 and NA97 FGO 0034.

OVERVIEW

The Stock Assessment Peer Review Process, adopted in May 1997 by the Atlantic States Marine Fisheries Commission, was developed to standardize the process of stock assessment reviews and validate the Commission's stock assessments. The purpose of the peer review process is to: 1) ensure that stock assessments for all species managed by the Commission periodically undergo a formal peer review; 2) improve the quality of Commission stock assessments; 3) improve the credibility of the scientific basis for management; and 4) improve public understanding of fisheries stock assessments. The definition of stock assessment adopted for this process includes model development, parameter development, and data review.

The Stock Assessment Peer Review Process report outlines four options for conducting a peer review of Commission managed species. These options are, in order of priority:

1) The Stock Assessment Workshop/Stock Assessment Review Committee (SAW/SARC) conducted by the National Marine Fisheries Service (NMFS), Northeast Fisheries Science Center (NEFSC).
2) A Commission stock assessment review panel composed of 3-4 stock assessment biologists (state, federal, university) will be formed for each review. The Commission review panel will include scientists from outside the range of the species to improve objectivity.
3) A formal review using the structure of existing organizations (i.e. American Fisheries Society (AFS), International Council for Exploration of the Sea (ICES), or the National Academy of Sciences).
4) An internal review of the stock assessment conducted through the Commission's existing structure (i.e. Technical Committee, Stock Assessment Committee).

Twice annually, the Commission's Interstate Fisheries Management Program (ISFMP) Policy Board prioritizes all Commission managed species based on species Management Board advice and other prioritization criteria. The species with highest priority are assigned to a review process to be conducted in a timely manner.

In October 1997, American shad and Atlantic sturgeon were prioritized for an external peer review to be conducted in early 1998. An external review panel was formed of four stock assessment biologists with expertise in anadromous species. Panel members included Dave Perkins, US Geological Service; Roger Rulifson, East Carolina University; Ray Schaffter, California Department of Fish and Game; and Saul Saila, University of Rhode Island (retired). Dr. Saila was unable to attend the review.

Terms of reference were developed for both species and were used to focus discussions during a three day meeting (March 17-19, 1998) to review stock assessments for American shad
and Atlantic sturgeon. This Stock Assessment Peer Review Report includes all details of the stock assessment conducted for American shad, including data inputs, model parameters, assessment results, and management advice. A supplementary Terms of Reference and Advisory Report is also available, which provides the peer review panel comments and advice on each specific term of reference. If you are interested in obtaining copies of the Stock Assessment Peer Review Report for Atlantic sturgeon or either of the Terms of Reference and Advisory Reports, please contact Dr. Lisa L. Kline at (202) 289-6400 or lkline@asmfc.org.

The major portion of the Shad Stock Assessment Peer Review Report is the stock assessment report of American shad from selected Atlantic coast rivers, drafted by Victor Crecco, Chairman of the Commission's Shad and River Herring Stock Assessment Subcommittee. Several ancillary reports are also appended, including: 1) Stock Status and Definition of overfishing Rate for American Shad of the Hudson River Estuary, drafted by Kathryn Hattala and Andrew Kahnle; 2) Stock Contributions for American Shad Landings in Mixed Stock Fisheries Along the Atlantic Coast, drafted by K. Hattala, R. Allen, N. Lazar, and R. O'Reilly; and 3) Review of American Shad Petersen Population Estimates for the Upper Chesapeake Bay, 1980-1997, drafted by the Maryland Department of Natural Resources. We would also like to recognize the contributions of various Commission staff members who contributed a great deal of time and effort to the peer review meeting and completion of reports, including Tina Berger, Jeffrey Brust, John Field, Lisa Kline, Vanessa Jones, and Heidi Timer.

These reports were presented to the Commission's American Shad and River Herring Technical Committee and Management Board prior to submission to the Peer Review Panel. As of March 1998 the information contained in these reports was current. However, these committees have continued to update the data contained in these reports so as to maintain and improve the management of these species. As such, portions of these reports may have been updated since the peer review and more comprehensive analyses may have been conducted.

EXECUTIVE SUMMARY

Given the pronounced drop in coastwide shad landings and stock abundance from several Atlantic coast rivers after 1990, a revised stock assessment is clearly warranted to determine the root cause(s) of the recent shad declines along the Atlantic coast. In this report, the Shad Stock Assessment Subcommitee (SSAS) estimated an overfishing definition (F_{30}), stock trends, and current and historic coastal $\left(\mathrm{F}_{\mathrm{c}}\right)$ and inriver $\left(\mathrm{F}_{\mathrm{r}}\right)$ fishing mortality rates on American shad from 19 selected stocks or river systems located from Maine Rivers in the north to the Altamaha River, GA to the south. Trends in total mortality (Z), which include fishing and natural mortalities, were examined for the Pawcatuck River RI, Upper Chesapeake Bay MD and tributaries of Albemarle Sound NC. The SSAC also examined trends in commercial landings for Maine Rivers, as well as for North Carolina Rivers (Albemarle Sound, Neuse, Pamlico and Cape Fear Rivers) and South Carolina Rivers (Waccamaw - Pee Dee, Savannah, Edisto and Santee Rivers). The SSAS examined trends in relative adult stock abundance in the Merrimack River MA-NH based on fishway counts and for Virginia Rivers (James, York and Rappahannock Rivers) based on commercial catch-per-effort (CPUE). The Thompson-Bell yield-per-recruit (YPR) model was used to estimate the overfishing definition $\left(\mathrm{F}_{30}\right)$ for each shad stock.

Based on historic trends in commercial CPUE, fishway counts, and population estimates, there is evidence of recent (1992-96) and persistent stock declines in 2 of 12 rivers or systems (Hudson River NY and York River VA). Stock declines were evident in the Pawcatuck River RI from 1992 to 1994, but stock abundance has risen sharply in the Pawcatuck during 1995 and 1996. Similarly, although shad stock abundance in the Connecticut River had declined to low levels from 1992 to 1995, stock size has risen steadily in 1996 and 1997 to levels approaching the long-term average (800,000 fish). Inriver commercial landings in the Edisto River SC have declined since 1990, but shad stock abundance in the Edisto exhibited no apparent decline from 1989 to 1996. This strongly suggests that the drop in commercial landings in the Edisto River was largely due to a reduction in fishing effort and not stock abundance. There was no evidence of recent stock declines for seven additional stocks including the Merrimack River MA-NH, the Delaware River DE-NJ, Upper Chesapeake Bay tributaries MD, Rappahannock River VA, James River VA, Santee River SC and the Altamaha River GA. Presumed stock declines inferred solely from declining trends in inriver commercial landings were evident for seven additional stocks including the Neuse NC, Pamlico NC, Cape Fear NC, Waccamaw-Pee Dee SC and Savannah Rivers SC, for tributaries of Albemarle Sound NC, as well as for rivers in the state of Maine.

Recent (1992-96) coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ on seven shad stocks (Connecticut, Hudson, Delaware, Upper Bay Edisto, Santee and Altamaha Rivers) were relatively low (F_{c} range: 0.02 to 0.24) and well below overfishing definitions (F_{30} range: 0.39-0.48). Average (1992-96) total fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$, which include inriver and coastal fishing mortalities, were below overfishing definitions $\left(\mathrm{F}_{30}\right)$ for all seven shad stocks for which inriver $\left(\mathrm{F}_{\mathrm{r}}\right)$ and coastal $\left(F_{c}\right)$ fishing rates could be estimated. The recent (1994-97) average F_{t} level $\left(F_{t}=0.45\right)$ on Edisto River shad was only slightly below the overfishing definition ($\mathrm{F}_{30}=0.48$) for southern stocks, indicating that fishing mortality rates on Edisto shad should be monitored closely over the next few years. Based on the analysis of seven shad stocks (Connecticut, Hudson, Delaware, Upper Bay Edisto Santee and Altamaha Rivers), there is no evidence thus far that the coastal
intercept fishery has had an adverse impact on shad stock abundance along the Atlantic coast.
There are no direct fishing mortality estimates (F) on the Pawcatuck River stock. However, total mortality rates (Z) declined by about 50\% in the Pawcatuck River between 1989 and 1992. Fishing mortality rates have apparently not increased on the Pawcatuck shad stock since Z estimates have not risen recently. This suggests that the recent (1992-94) stock decline in the Pawcatuck was not due to overfishing. The ability to rule out overfishing for the Pawcatuck River stock is tempered somewhat by the fact that no stock origin studies have ever been conducted on the coastal Rhode Island shad landings which, in theory, could easily have overharvested the small (stock size: 1000 to 2000 fish) Pawcatuck stock. Moreover, total mortality (Z) estimates are not available for the Pawcatuck stock after 1992. In order to address potential overfishing in the Pawcatuck, it would be beneficial to estimate fishing mortality (F) directly and to conduct a tagging study on the Rhode Island coastal fishery to determine stock origin.

Relative exploitation rates ($\mathrm{u}_{\mathrm{rel}}$) from the coastal intercept fishery on the York, Rappahannock and James Rivers VA exhibited no apparent trends from 1980 to 1993. This suggests that the coastal intercept harvest was not related to the shad stock declines in the York and Rappahannock Rivers. The ability to directly link the coastal intercept fishery to stock declines for these rivers is somewhat limited by the lack of CPUE data in 1994, 1995 and 1996, and by the fact that relative exploitation rates cannot be directly compared to the overfishing definition $\left(\mathrm{F}_{30}\right)$. In addition, it is difficult to assess recent trends in relative exploitation on the Rappahannock or James River origin shad because shad fishing effort declined markedly in these rivers by as compared to the 1980-85 period.

There are no direct estimates of current fishing mortality (F) for seven rivers that have exhibited a recent decline in shad landings. These include shad stocks from Maine Rivers, Albemarle Sound NC, Neuse River NC, Pamlico River NC, Cape Fear River NC, Waccamaw-Pee Dee River SC, and the Savannah River SC. Given the limitations in using landings trends to infer stock trends, there is no way to adequately link inriver and coastal fisheries with presumed stock declines in these rivers. Total mortality estimates (Z) have been estimated for shad tributaries of Albemarle Sound between 1980 and 1995. Since these Z estimates have varied without trend, there is no indication that a rise in fishing mortality was related to the decline in commercial shad landings in Albemarle Sound.

Shad stock sizes in the Hudson River have declined rather steadily from 1988 to 1996, although current average F (mean $\mathrm{F}=0.33$) was still below the estimated overfishing definition $\left(\mathrm{F}_{30}=0.39\right)$. As a result, the Hudson River stock is considered to be fully exploited. Shad stock abundance in the Merrimack River, Santee River SC, Altamaha River GA, Delaware River and Upper Bay Rivers MD have either recently risen to high levels (i.e. Santee, Altamaha and Upper Bay stocks) or have remained stable (i.e. Delaware and Merrimack stocks). Current (mean 199296) fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$ on these stocks have either approached the overfishing definition
(F_{30} level) (i.e. as in the case of the Altamaha and Edisto stocks), or were far below the estimated F_{30} level (i.e. as in the case of the Upper Bay, Delaware and Santee River stocks). No fishing mortality estimates are available for the Merrimack River stock.

There is no evidence of recent (1990-96) recruitment failure for any of the eight shad stocks (Maine Rivers, Pawcatuck, Connecticut, Hudson, Delaware, Upper Bay Tributaries, Altamaha and Virginia Rivers) for which a continuous time series of juvenile indices could be examined.

This assessment estimated fishing mortality (F) rates for nine shad stocks and general trends in abundance for 13 American shad stocks. The total range of extant American shad populations includes additional populations in small river systems, as well as depleted populations in larger river systems that are actively being restored. Also, much historical and habitat is currently vacant and may be targeted for restoration in the future. For these stocks, individual states have targeted minimal fishing mortality to protect small stocks and rebuild others. This assessment cannot quantitatively address these systems because of limited biological data, as well as associated uncertainties in stock composition of small populations in these fisheries. Like all mixed stock fisheries, small stocks can be at risk under these conditions.

TERMS OF REFERENCE

1) Estimate natural mortality (M) for American shad stocks by major river system or geographic region (ME-CT, NY-VA, NC-FL)
2) Assess relative status of American shad stocks in the Merrimack, Pawcatuck, Connecticut, Hudson, Delaware, James, York, Rappahannock, Edisto, Santee, and Altamaha Rivers through analysis of fishway counts, mark/recapture techniques, hydro acoustic surveys, or commercial catch per unit effort data.
3) Review population estimates of American shad in the Upper Chesapeake Bay based on mark-recapture techniques.
4) Review biological reference points, coastal fishing mortality, and in-river fishing mortality (sexes combined) for the Connecticut, Hudson, Delaware, Upper Chesapeake Bay, Edisto, Santee, and Altamaha Rivers.
5) Evaluate the risk of mixed stock (ocean intercept) fisheries to depleted and hatcherysupplemented stocks, given the assumed stock contributions to ocean landings.

TABLE OF CONTENT

LIST OF TABLES xi
LIST OF FIGURES xii
INTRODUCTION 1
METHODS 3
Abundance and Fishing Mortality Data 3
Coastal Intercept Commercial Fisheries 3
Maine 4
Merrimack River MA-NH 4
Pawcatuck River RI 4
Connecticut River CT-MA 4
Hudson River NY 5
Delaware River DE-NJ 8
Upper Bay MD 9
Virginia Rivers 10
North Carolina Rivers 11
South Carolina Rivers 12
Altamaha River GA 13
Biological Reference Points 14
RESULTS AND DISCUSSION 17
Maine 17
Merrimack River 17
Pawcatuck River 17
Connecticut River 18
Hudson River 18
Delaware River 20
Upper Bay 20
Virginia Rivers 21
Albemarle Sound NC 21
Pamlico, Neuse and Cape Fear Rivers NC 22
Waccamaw-Pee Dee, Santee, Edisto and Savannah Rivers SC 22
Altamaha River 23
Other Rivers 23
LITERATURE CITED 25
Appendices 1-12 96
Attachment A: Stock Contributions 140
Attachment B: \quad Review of American Shad Peterson Population Estimates 154
Attachment C: Stock Status and Definition of Overfishing Rate 178

List of Table

Table
Page

1. American shad rivers or systems and the respective time series of fisheriesdependent and fisheries-independent data used in the 1996 stock assessment
2. Landings (pounds * 1000) adjusted based on percent reporting 30
3. State stock(s) affected by mixed stock fisheries (pounds *1000) 31
4. Conversion (of affected stocks) from pounds to numbers (* 1000) using
average weight
5. Method of estimating underreporting (424\%) for the inriver commercial shad fishery in the Santee River SC based on the 1991 and 1992 data
6. Input parameters for the Thompson-Bell Yield-Per-Recruit Model (YPR) for each shad stock to estimate F_{30}33
7. Mean (1992-96) inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$, mean (1992-96) coastal fishing mortality (F_{c}) and mean total (1992-96) fishing mortality $\left(\mathrm{F}_{\text {total }}\right)$ (sexes combined) as compared to the overfishing definition $\left(\mathrm{F}_{30}\right)$ for American shad from selected Atlantic coast rivers
8. Estimates of inriver $\left(\mathrm{F}_{\mathrm{r}}\right)$, coastal $\left(\mathrm{F}_{\mathrm{c}}\right)$ and total $\left(\mathrm{F}_{\text {total }}\right)$ fishing mortality rates for shad (sexes combined) in the Edisto and Santee Rivers from 1989 to 1997 based on tagging (Appendix 10)35

List of Figures

Figure Page

1. Reported inriver commercial shad landings (pounds *1000) from the Atlantic coast, 1980-1996 36
2. Reported coastal commercial shad landings (pounds *1000) from the Atlantic coast, 1980-1996 37
3. Overall average juvenile shad abundance indices for four rivers in the state of Maine, 1979-1995 38
4. State wide coastal commercial landings (pounds *1000) of American shad for the state of Maine, 1979-1992 39
5. Relative population size (mean fish lifted/day) of American shad in theOver the Essex Dam in the Merrimack River, 1983-199540
6. Population size (pounds) entering the Pawcatuck River, 1974-1996 41
7. Juvenile shad indices of abundance (catch/seine haul) in the Pawcatuck River, 1977-1978 and from 1985-1996 42
8. Total mortality estimates (Z) for American shad in the Pawcatuck River, from 1981-1992 43
9. Population size in numbers (numbers *1000) of Connecticut River shad, 1980-1997 44
10. Fishing mortality rates from commercial and recreational fishing within the Connecticut River, 1966-1996 45
11. Fishing mortality rates (F) from the coastal commercial fishery on Connecticut River shad, 1980-1996 46
12. Total fishing mortality rate from commercial and sport fishing on Connecticut River shad, 1980-1996 47
13. Recruitment based on scaled juvenile indices for Connecticut River Shad, 1966-1996 48
14. Population size in numbers of Hudson River shad, 1980-1996 49
15. Commercial shad landings within the Hudson River, 1980-1996 50
16. Fishing mortality rates from inriver commercial fisheries on Hudson River shad, 1980-1996 51
Figure
17. Fishing mortality rates from coastal commercial fisheries on Hudson River shad, 1980-1996 52
18. Total fishing mortality rates on Hudson River shad, 1980-1996, based on q estimate from Talbot, 1954 53
19. Population size in numbers of Hudson River Shad, 1980-1996 54
20. Fishing mortality rates from inriver commercial fisheries on Hudson River shad, 1980-1996 55
21. Fishing mortality rates from coastal commercial fisheries on Hudson River shad, 1980-1996 56
22. Total fishing mortality rates from coastal and inriver commercial Fisheries on Hudson River shad, 1980-1996 57
23. Postlarval index of recruitment (catch/tow) in the Hudson River, 1974-1994 58
24. Population in numbers for Delaware River shad, 1980-1996 59
25. Recruitment based on scaled juvenile indices for Delaware River shad, 1980-1996 60
26. Inriver fishing mortality rates on Delaware River shad, 1980-1996 61
27. Coastal fishing mortality rates on Delaware River shad, 1980-1996 62
28. Total fishing mortality rates on Delaware River Shad, 1980-1996 63
29. Total stock size of American shad from the Upper Bay, 1980-1996 64
30. American shad natural population size to the Upper Bay, 1980-1996 65
31. Juvenile shad relative abundance from the Upper Chesapeake Bay, 1980-1995 66
32. Coastal fishing mortality rates on American shad from the Upper Chesapeake Bay, 1980-1996 67
Figure
33. Natural morality rates on American shad from Maryland waters,

34.	Rappahannock River commercial catch-per-effort for female American Shad, 1980-1993	69
35.	York River commercial catch-per-effort for female American shad, 1980-1993	70
36.	James River commercial catch-per-effort for female American shad, 1980-1993	71
37.	Relative exploitation rate on Rappahannock River female shad from the coastal commercial fishery, 1980-1993	72
38.	Relative exploitation rate on York River female shad from the coastal commercial fishery, 1980-1993	73
39.	Relative exploitation on James River female shad from the coastal commercial fishery, 1980-1993	74
40.	Estimated coastal commercial shad landings (pounds) from Virginia Rivers, 1980-1995	75
41.	Juvenile Shad Abundance (Maximal CPE) from the Mattaponi River, 1979-1987 and from 1991-1996	76
42.	Juvenile shad abundance (maximal CPE) from the Pamunkey River, 1979-1987-1991-1996	77
43.	North Carolina commercial shad landings (pounds *1000) from Albemarle Sound, 1980-1996	78
44.	Estimated coastal commercial shad landings (numbers *1000) from North Carolina River, 1980-1996	79
45.	Total Mortality Rates (Z) for American shad from Albemarle Sound, North Carolina, 1980-1993	80
46.	North Carolina commercial landings (pounds *1000) of American shad from the Pamlico River, 1980-1996	81
Figure		Page
47.	North Carolina commercial landings (pounds *1000) of American shad	

from the Neuse River, 1980-1996
48. North Carolina commercial shad landings (pounds *1000) from Cape
Fear River, 1980-1996
49. Inriver commercial landings (pounds *1000) adjusted for underreporting of American shad in the Waccamaw-Pee Dee River, 1980-199684
50. Inriver commercial landings (pounds *1000) adjusted for underreporting of American shad in the Edisto River, 1980-199685

51. Inriver commercial landings (pounds *1000) adjusted for underreporting
of American shad in the Savannah River, 1980-1996 86
52. Inriver commercial landings (pounds *1000) adjusted for underreporting of
American shad in the Santee River, 1990-1996 87
53. Stock size (numbers *1000) of American shad in the Santee River, 1990-1996 88
54. Population size (river+coastal landings) of American shad on the Edisto River, 1989-1990 and 1994-199689
55. Population in numbers for Altamaha River shad, 1982-1996
56. Adjusted inriver commercial landings (numbers *1000) of Altamaha
River shad, 1982-1996
57. Inriver fishing mortality rates on Altamaha River shad, 1982-199693
58. Coastal fishing mortality rates on Altamaha River shad, 1982-1996 94
59. Recruitment to the Altamaha River shad stock, 1982-1991 95

INTRODUCTION

The American shad (Alosa sapidissima) is an anadromous clupeid that spawns mainly during spring in many Atlantic coast rivers from winter to summer (Walburg and Nichols 1967). Many of these spawning runs have been subjected to inriver commercial and recreational fisheries of varying magnitude. The reported inriver commercial landings currently (1996) account for about one-third of the total reported USA commercial landings of American shad (Hattala 1997). The total inriver commercial landing have declined steadily from over 3.2 million pounds in 1980 to less than 600,000 pounds in 1996 (Figure 1). American shad are also harvested primarily by gillnets from a coastal intercept commercial fishery that takes place during spring from Florida to Maine. These intercept landings rose steadily from 1980 to a peak of 2.0 million pounds in 1989, then declined thereafter to about a million pounds in 1996 (Figure 2). Moreover, shad population abundance in the Hudson, Connecticut and Pawcatuck Rivers recently has (1990 to 1995) declined to low levels (Hattala 1995; Crecco 1995; Powell 1995). The underlying cause(s) for the widespread decline in shad landings may differ regionally, and may be due to several factors including overfishing, enhanced striped bass predation, changes in abiotic conditions and a drop in commercial fishing effort.

The most recent shad assessment was conducted by the Commission (Gibson et al. 1988) in 1987 on 12 shad stocks located from Rhode Island to Florida. The results indicated that the average maximum sustainable harvest rate ($\mathrm{u}_{\text {msy }}$), the previous overfishing definition, for 12 American shad stocks was about 0.50 (ie a 50% harvest rate, $\mathrm{F}_{\mathrm{msy}}=0.69$). Except for the Susquehanna shad stock in the mid-1970's, the estimated annual fishing mortality rates (u) from the other 11 shad stocks during the mid-1980's were below the $u_{\text {msy }}$ level of 0.50 . The 1987 assessment also indicated that relative and absolute stock sizes from 10 shad stocks were either increasing or were stable from 1980 through 1986, whereas stock abundance from two southern shad stocks (Tar-Pamlico and Cape Fear stocks) had declined steadily from 1980 through 1986 under moderate fishing pressure. The major conclusions from the 1987 assessment were that overfishing was not occurring during the early to mid-1980's, and that stock sizes were generally stable along the Atlantic coast.

Given the persistent drop in coastwide shad landings and stock abundance from several Atlantic coast rivers after 1990, a revised stock assessment is clearly warranted. An assessment is needed to determine which shad stocks have exhibited the greatest declines, and determine the root cause(s) for these declines along the Atlantic coast (Rulifson 1994). In this report, an overfishing definition $\left(\mathrm{F}_{30}\right)$, relative and absolute stock trends and current and historic fishing mortality rates (F) were estimated on American shad from 19 selected stocks from Maine Rivers in the north to the Altamaha River, GA in the south (Table 1). Trends in total mortality (Z), which include fishing and natural mortalities, were examined for the Pawcatuck River RI and tributaries of Albemarle Sound NC. The SSAC also examined trends in commercial landings and
juvenile shad abundance for rivers in the state of Maine. The SSAS examined trends in relative adult stock abundance in the Merrimack River MA-NH based on fishway counts and for the York, Rappahannock and James Rivers VA based on commercial catch-per-effort.

Because of potential overharvest associated from the coastal intercept fishery, an effort was made to estimate coastal (F_{c}) fishing mortality rates on each shad stock. The Shad Stock Assessment Subcommittee (SSAS) (Hattala et. al. 1997) separated the 1980-96 coastal landings (Table 2) by river system or by state (Tables 4 and 5) based on available tagging and recent mitochondrial DNA studies (mtDNA) (Brown and Epifanio 1994). This assessment by the SSAS was based on trends in population estimates, fishway counts, commercial landings catch-per-uniteffort (CPUE) and juvenile abundance indices. Direct inferences about overfishing were made on only those shad stocks (ie Pawcatuck, Connecticut, Hudson, Delaware, Upper Bay, James, York, Rappahannock, Edisto, Santee, Altamaha Rivers) for which estimated stock trends, total mortality (Z), relative exploitation and fishing mortality rates (F) were available. Trends in commercial landings data were used to evaluate stock conditions only for selected shad rivers in North Carolina (Albemarle Sound tributaries, Cape Fear River, Neuse River and Pamlico Rivers) and South Carolina (Savannah and Waccamah-Pee Dee Rivers). This was necessary because no CPUE and fishway counts data were made available on these stocks to the SSAS. The SSAS also examined trends in the spawning population in the Merrimack River MA-NH based on fishway counts, as well as changes in commercial CPE from the York, Rappahannock and James Rivers, Virginia. A particular stock was determined to be overfished if shad stock abundance declined recently (1992-1996) under total fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{c}}+\mathrm{F}_{\mathrm{r}}\right)$ that exceeded the overfishing definition $\left(\mathrm{F}_{30}\right)$.

METHODS

Abundance and Fishing Mortality Data

In this report, a combination of commercial landings, nominal fishing effort, catch per effort (CPUE), fishway counts, population estimates, juvenile abundance and age structure data were used to reconstruct population abundance and fishing mortality trends for each of the 19 shad stocks (Table 1, Appendix 1 to 11). The quality and quantity of shad data differed greatly among the 19 stocks (Table 1). Conclusions based solely on declining historic trends in shad landings can be very misleading without considering changes in the ratio of landings to fishing effort (i.e. CPUE). For this reason, an assessment of stock trends was based on changes in abundance derived from population estimates, fishway counts and commercial landings CPUE rather than solely from commercial landings data. If overharvest is an underlying cause for a stock decline in a particular river, the recent (1992-96) average total fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$ generated by inriver and coastal commercial fisheries should exceed the overfishing definition $\left(\mathrm{F}_{30}\right)$.

Given the high level of uncertainty associated with commercial landings and in certain population estimates, a stock was considered depleted if commercial landings, stock abundance and/or CPUE displayed a qualitative decline from 1992 to 1996. No time series and regression analyses were performed to more rigorously determine a recent stock decline. Since a recent decline in shad commercial landings can be due to reduced fishing effort and/or to a decline in stock abundance, the assessment of stock condition based on landings trends was made (ie North Carolina Rivers and certain South Carolina Rivers) only when relative (CPUE) or absolute abundance data were lacking. Given below is a description of the data sets and methods used to estimate stock abundance, recruitment, nominal fishing effort and fishing mortality rates (F) for each shad stock.

Coastal Intercept Commercial Fisheries

Because coastal commercial intercept landings of American shad are composed of numerous shad stocks (Talbot and Sykes 1958; Harris and Rulifson 1989; Brown 1992), the contribution of each shad stock to the coastal intercept landings and its effect on total fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ on each stock needed to be estimated. The problem of separating the coastal landings by time (year) and space (stock) has been confounded by the limited number of tagging and mitochondrial DNA (mtDNA) studies on the shad intercept fishery since 1960. After considering the many limitations in the mtDNA and coastal tagging studies, the SSAS attempted to estimate the contribution of the 1980-96 coastal intercept shad landings by state or river system by combining the results of a recent mitochondrial DNA (mtDNA) study (Brown and Epifanio 1994) with various tagging studies from the coastal intercept fisheries (Hattala et. al. 1996, Parker 1992, Krantz et. al. 1992, Jesian et. al. 1992, McCord 1987 and Nichols 1958). Please refer to the document by Hattala et. al. (1997) for specific details on how the coastal intercept landings were decomposed into states and river systems from 1980 to 1996. The annual commercial intercept landings (pounds and numbers) (Tables 3 and 4) from each states or river system were estimated as the product of the average fractional contribution of the landings from each system based on coastal tagging and mtDNA studies (Hattala et. al. 1997 for details) and the reported coastal
landings from each state (Table 2).

Abstract

Maine

American shad juvenile indices (mean catch/ seine haul) of abundance have been monitored from five Maine river systems (Kennebec River, Androscoggin River, Merrymeeting Bay, Eastern River and Cathance River) from 1979 to 1995 (Squires 1995) (Appendix 1). An overall juvenile shad index for each year was derived as the arithmetic mean index for all five rivers combined (unweighted). Coastal commercial shad landings (lbs.) are also available from 1951 to 1995 (Figure 4). There are no fishing effort data or estimated fishing mortality rates (F) on shad for the state of Maine.

\section*{Merrimack River MA-NH}

Fishlift data at the Essex Dam have been used to monitor relative shad population trends in the Merrimack River from 1980 through 1995 (Brady 1995). A more effective adult shad abundance index was derived as a ratio of shad numbers lifted annually and the number of days in which the Essex Dam lift had been operating from 1980 to 1995 (Appendix 2). There are no fishing effort data, commercial landings or estimated fishing mortality rates (F) on shad from the Merrimack River.

Pawcatuck River RI

Population estimates based annually on fishlift counts at the Potter Hill Fishladder on the Pawcatuck River were available from 1970 through 1996 (Gibson et al. 1988; Powell 1995). Juvenile indices (catch/seine haul) in the Pawcatuck River have been made annually in 1977-78 and from 1985 to 1996 (Appendix 3). Adult recruitment estimates (contribution of virgin adults) also have been derived for the 1974-1990 year-classes based on age composition and adult lift counts from 1970 to 1996 (Gibson et al. 1988). Total mortality rates (Z) among adult shad have been estimated annually from 1979 through 1992 based on the log survival ratio of repeat spawners in year $t+1$ to the total adult stock in year t (Gibson et al. 1988; Powell 1995). There are no commercial landings and fishing effort data in the Pawcatuck River. Since there have been no tagging studies conducted on the Rhode Island coastal shad landings, we were unable to determine the contribution of the Pawcatuck stock in these coastal landing

Connecticut River CT-MA

The state of Connecticut has monitored shad abundance (pounds and numbers), age structure and spawning history in the Connecticut River from 1966 through 1996. This has been done by population estimates based on mark-recapture studies combined with annual fishway counts and age subsampling at the Holyoke lift (Appendix 4) (Crecco and Savoy 1987; Crecco 1995). Juvenile production (mean catch/seine haul) in the Connecticut also has been monitored from 1966 through 1996 by annual beach seine surveys (Appendix 3). Adult recruitment to the spawning population from the 1966-1982 year-classes has been estimated in the Connecticut River based on the age structure of the shad populations from 1970 to 1988. The adult recruitment
estimates from 1966 to 1982 were highly correlated ($\mathrm{r}=0.82, \mathrm{P}<0.01$) to the juvenile indices which produced them, indicating that juvenile production estimates were a useful predictor of future stock size.

Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ have been estimated from 1970 to 1996 (Appendix 4) as a \log ratio (seasonal fishery) of commercial landings (adjusted for 50% reporting rate and discard of male shad) in numbers (CL) plus the riverwide recreational harvest in numbers (RL) divided by stock size (N):

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=-\log 1-(\mathrm{CL}+\mathrm{RL} /(\mathrm{N})) . \tag{1}
\end{equation*}
$$

Crecco and Savoy (1986) found that inriver commercial shad landings (CL) had been underreported or discarded to the State by between 35 and 67% from 1979 to 1983 based on the ratio of tag returns to the reported commercial landings.

The contribution of Connecticut River shad to the coastal intercept fishery between 1980 and 1996 (Tables 3 and 4) was based on the coastal landings from Virginia to Maine (Table 2) and the combined tagging and mtDNA results (Hattala et. al. 1997). More specifically, the coastal landings that were estimated from the Connecticut River shad stock was the sum of the VA-MD coastal harvest (times 0.064 and 0.03), the DE-NJ coastal landings (times 0.188), and the NY-NE coastal landings (times 0.50). Since landings underreporting and discard have been documented for the inriver commercial fishery, the coastal intercept landings in number (CCL) (assumed average weight $=5.0 \mathrm{lbs}$.) from the Connecticut River stock (Table 5) were also adjusted up to reflect a 50% reporting rate and discard rate of male shad. Given that the coastal landings were assumed to occur before the spawning stock enters the River, the coastal fishing mortality rates (F_{c}) on Connecticut River shad were also estimated by adding the coastal landings (CCL) (Table $4)$ to the population estimate (N) in equation 1 :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{c}}=-\log (1-(\mathrm{CCL} /(\mathrm{CCL}+\mathrm{N}))) . \tag{2}
\end{equation*}
$$

The total fishing mortality rate $\left(\mathrm{F}_{\mathrm{t}}\right)$ on Connecticut River shad was estimated between 1980 and 1995 by adding F_{r} and F_{c}.

Spawning stock biomass (SSB) for Connecticut River shad was estimated by firstly, converting stock size in numbers (N) and catch in numbers (N) to weight by multiplying these values by 5.0 lbs . and then subtracting the catch in weight from stock size in weight (Appendix 4).

Hudson River NY

The state of New York (NY DEC) has monitored shad relative abundance and age structure in the Hudson River from 1980 through 1995 based on commercial gillnet catch per effort (CPUE) and CPUE from spawning stock seine surveys (Appendix 5) (Hattala 1995). Juvenile shad recruitment in the Hudson also has been monitored from 1980 through 1994 by annual beach seine surveys (Appendix 5). In addition, postlarval relative abundance (catch/tow) from 1974 through 1992 has been monitored by Con. Ed. Utilities. Since there is a strong positive correlation (r = $0.85, \mathrm{P}<0.002$) between the NYDEC juvenile and utilities postlarval indices between 1980 and 1992, the postlarval indices were chosen as a recruitment index because the utilities indices represent a longer time series (Appendix 5).

There is a long time series (1980-96) of commercial shad landings and nominal fishing effort (either licensed gillnet yd. ${ }^{2}$ or licensed ft.) data, including the number of closed hrs./week, in the Hudson River (Hattala 1995) (Appendix 5). Klauda et al. (1976) generated catch/effort data (catch/gillnet yds. ${ }^{2}$) for American shad from 1931-1975. Fishing effort in the Hudson from 1980 to 1995 was expressed as either licensed gillnet ft. or gillnet yds. ${ }^{2}$. There is a significant positive regression between commercial fishing effort expressed as yds. ${ }^{2}$ and ft. from 1932 to 1964 ($\mathrm{r}=$ 0.94 , regression: $\mathrm{ft} .=4.43 *$ yds. ${ }^{2 * *} 0.70$). Using this regression, fishing effort (E) expressed as gillnet yds. ${ }^{2}$ in certain years were then converted to licensed ft . and then multiplied by the season length from 1980 to 1995 (Appendix 5). Since fishing effort data on Hudson River shad are not yet available for 1996, the 1995 effort estimate (176.4 gillnet yds. ${ }^{2}$) was used as an effort estimate in 1996.

Talbot (1954) estimated shad population size and harvest rates (u) in the Hudson River from 1940 to 1951 by estimating the catchability coefficient (q) from a single tag-recapture study in 1951. Talbot (1954) estimated shad stock size assuming that the estimated q in 1951 remained constant over time. Fredin (1954) estimated the size of the nearby Connecticut River shad population from 1940 to 1951 with the same methods as Talbot (1954) for the Hudson. The results showed that, on average, the Hudson shad stock was 2.9 times larger than the Connecticut River shad stock from 1940 to 1951 (Appendix 5). From these data, the scale of difference (i.e. 2.9) between the average size of the Connecticut and Hudson stock can be established (Appendix 5). However, as will be shown below, the magnitude of the population sizes in the Connecticut (Fredin 1954) and Hudson Rivers (Talbot 1954) was greatly underestimated.

Leggett (1976) studied shad in the Connecticut River and reported that the Petersen disc tags used in Talbot's (1954) and Fredin's (1954) tagging studies caused tagged shad to be more susceptible to the gillnets, resulting in an 45% overestimate of q in the Hudson and Connecticut Rivers. For this reason, the q estimate from Talbot (1954) ($q=0.0035$) was reduced by 45% ($q=$ 0.0019). Crecco and Savoy (1981) tagged shad in the Connecticut River from a pound net (nonselective gear) in 1980 and concluded that the catchability coefficient (q) used by Leggett (1976) based on gillnet sampling was overestimated by about 100%. This was because the gillnet mesh (5.5 in. mesh) used for tagging by Leggett (1976) selected for the larger female shad which resulted in too many recaptures from commercial gillnets and population estimates that were greatly underestimated. For this reason, the catchability coefficient (q) in the Hudson River was
further reduced ($q=$ from 0.0019 to 0.00093) (Appendix 5) to reflect the gillnet selectivity bias in Talbot (1954). Shad population size in lbs. (N) in the Hudson from 1980 to 1996 was estimated with commercial landings (C) adjusted for underreporting (50% reporting rate as per the Connecticut River), fishing effort ($\mathrm{E}=$ licensed ft .* open season) and the adjusted catchability coefficient ($\mathrm{q}=0.00093$):

$$
\begin{equation*}
\mathrm{N}=\mathrm{C} /(1-\exp -(\mathrm{q} * \mathrm{E})) . \tag{3}
\end{equation*}
$$

The accuracy of equation 3 to estimate stock size (N) depends on the assumption that the catchability coefficient (q) is either constant over time, or is unrelated to stock size and fishing effort (E). Although Crecco and Savoy (1985) reported that q was inversely related to shad stock size in the Connecticut River, the degree of bias in stock reconstruction of the Connecticut stock with equation 3 was not sufficiently high to have altered historic trends from 1940 to 1973 (Leggett 1976).

Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ were estimated on Hudson River shad from 1980 to 1996 (Appendix 5) as a log ratio (seasonal fishery) of adjusted commercial landings in numbers (CL) divided by stock size (N):

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=-\log 1-(\mathrm{CL} /(\mathrm{N})) . \tag{4}
\end{equation*}
$$

In an effort to corroborate shad population abundance in the Hudson River based on Talbot (1954), the NYDEC has conducted tag-recapture studies on Hudson River shad from 1995 to 1997 (Kathy Hattala pers. comm.). The preliminary population estimate of adult shad in 1995 was 750,000 fish (Hattala 1997). Given the adjusted (i.e. for underreporting) inriver commercial shad landings in numbers of 79,583 fish in 1995, the inriver annual harvest rate (u) in 1995 was estimated to be 0.00062) as a ratio between the $1995 \mathrm{~F}\left(\mathrm{~F}_{\mathrm{r}}=0.11\right)$ and the 1995 fishing effort (176.4 gillnet yds. ${ }^{2}$). This revised q estimate was then substituted into equation 3 to estimate an additional time series of stock sizes from 1980 to 1996. An additional time series of inriver fishing rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ were also generated with the new stock estimates (N) from the 1995 q estimate (q $=0.00062$) and the adjusted commercial landings (equation 4).

Shad spawning biomass (SSB) in the Hudson between 1980 and 1996 was estimated by subtracting the adjusted commercial landings (C) from the population estimate (N) (Appendix 5). Assuming an average weight of 4.8 lbs. per fish, shad stock size in weight (N) was converted to numbers $\left(\mathrm{N}_{\mathrm{t}}\right)$. Inriver fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ on Hudson River shad was estimated as a log ratio between landings (C) and stock size (N) (equation 1).

The coastal intercept landings in number (CCL) (assumed average weight $=4.8 \mathrm{lbs}$. attributed to the Hudson River stock (Tables 3 and 4) were based on coastal tagging and mtDNA studies from NC to Maine (Hattala et. al. 1997) and the coastal landings from those states (Table 2). These coastal commercial landings were also adjusted up to reflect a 50% reporting rate and discard rate. Since the coastal landings were assumed to occur before the spawning stock enters the Hudson, the coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ on Hudson River shad were estimated by adding the coastal landings (CCL) (Table 4) to the population estimate (N) in equation 2. The total
fishing mortality rate $\left(\mathrm{F}_{\mathrm{t}}\right)$ on Hudson River shad was estimated between 1980 and 1996 by adding F_{r} and F_{c}.

Shad adult recruitment from 1974 to 1994 was estimated by scaling the utility postlarval index (Appendix 5) to the magnitude of the adult stock size between 1974 and 1994, assuming a 50% average repeat spawning rate based on the observed spawning history data from 1984 to 1991 (Hattala 1995).

Delaware River DE-NJ

The states of New Jersey and Delaware together have monitored shad relative and absolute abundance in the Delaware River based on commercial gillnet CPUE from 1989 through 1996 (Shirey 1995) and Petersen tag-recapture studies during most years (no estimates in 1984,1985,1987,1988,1990,1991,1993 and 1994) from 1975 through 1992 (Allen 1996) (Appendix 6). The 1995 and 1996 shad population estimates were based on hydro-acoustic methods (Allen 1996). The state of New Jersey also has monitored juvenile relative abundance (catch/seine haul) in the Delaware from 1979 through 1996 (Lupine 1991; Allen 1996). A fisheries-dependent index of adult stock abundance (mean catch/seine haul) from 1960 to 1995 is also available in the Delaware River from the Lewis haul seine fishery (Allen 1995) (Appendix 6). Commercial landings data (lbs.), separated into coastal, Delaware Bay and Delaware River landings, are available from the state of New Jersey between 1960 and 1996 (Allen 1995,1996). A similar breakdown of commercial shad landings from the state of Delaware has been made from 1985 to 1996 (Shirey 1996). In an effort to estimate total shad landings from the Delaware River, the reported commercial landings were doubled in order to reflect underreporting (i.e. 50% as per the Connecticut River) and the addition of substantial (50 to 80% of the New Jersey commercial landings; Lupine (1991)) recreational landings (Appendix 6). Inriver landings in numbers were estimated from 1980 to 1996 by dividing the landings (lbs.) by 4.5 lbs., which was the long-term average weight of a shad from commercial nets (Chittenden 1974) (Appendix 6).

The contribution of Delaware River shad to the coastal intercept fishery and in Delaware Bay between 1980 and 1996 (Tables 3 and 4) was based on the coastal landings (Table 2) from SC to RI and the tagging and mtDNA results. Coastal commercial landings (CCL) that were attributed to the Delaware River stock (Tables 3 and 4) were doubled to reflect catch underreporting and discard. Coastal landings from the Delaware in numbers were estimated from 1980 to 1996 by dividing the coastal landings (lbs.) by 4.5 lbs., which was the long-term average weight of a shad from commercial nets (Chittenden 1974) (Appendix 6).

To estimate shad population sizes in the Delaware River during years (1984,1985,1987,1988,1990,1991,1993 and 1994) when no population estimates were made, the SSAS opted to use the average of the nearest two population estimates that bracket those years when no tag-recapture estimates were generated. For example, the population estimates (N) for
the years 1984 and 1985 (422,500 fish) were based on the average of population estimates derived in 1983 (250,000 fish) and 1986 (595,000 fish). Similarly, the 1987 and 1988 population estimates (713,500 fish) were based on the average of the 1986 and 1989 (832,000 fish) population estimates.

Inriver fishing mortality $\left(\mathrm{F}_{\mathrm{r}}\right)$ on Delaware River shad between 1980 and 1996 was estimated as a log ratio between inriver commercial landings in numbers (C) and stock size (N) (equation 1). Since the coastal harvest of Delaware River shad is assumed to have occurred before the spawning stock enters the River, coastal fishing mortality $\left(\mathrm{F}_{\mathrm{c}}\right)$ on Delaware River shad was estimated from 1980 to 1996 as a log ratio (equation 2) between the coastal landings in number (CCL) (assumed average weight $=4.5 \mathrm{lbs}$.) from the Delaware, and the population size (N) plus the coastal harvest (CCL). Total fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ on Delaware River shad between 1980 and 1996 was estimated by adding F_{c} and F_{r}.

Annual recruitment (Appendix 6) to the Delaware River stock from the 1979-1996 yearclasses has been estimated based on juvenile indices (Appendix 6). Spawning stock biomass (SSB) from the Delaware was estimated from 1979 to 1996 by subtracting the inriver commercial landings in weight each year from the population estimate in weight (assuming 4.5 lbs . per fish).

Upper Bay MD

The state of Maryland has monitored shad absolute abundance (mark-recapture) and age structure from Upper Chesapeake Bay (mainly the Susquehanna River) from 1984 through 1996 (Weinrich 1995) (Appendix 7). Weinrich (1995) also estimated total annual mortality rates for adult shad in the Nanticoke River and Upper Bay from 1985 to 1994 (Appendix 7). Coastal commercial shad landings, fishing effort (yds. of gillnet) and CPUE data have been monitored by the state of Maryland from 1983 to 1995 (Weinrich 1995) (Appendix 7). Since a moratorium had been imposed on commercial shad fishing in Maryland's portion of the Bay since 1980, there are no reported Bay commercial landings within Maryland from 1980 to 1996 (Appendix 7).

The U. S. Fish and Wildlife Service (USFWS) has monitored the proportion of hatchery and wild American shad that were passed over the Conowingo Dam on the Susquehanna River from 1989 to 1996 (Dick St. Pierre USFWS pers. comm., see Appendix 7). In addition, the proportion of hatchery and wild shad from the entire Upper Bay stock has been monitored from 1993 to 1996 (Carol Markham MDDNR pers. comm., see Appendix 7). Since there is a significant ($\mathrm{r}=0.96, \mathrm{P}<0.01$) inverse linear relationship between the proportion of wild fish from the Conowingo Dam and from the Upper Bay from 1993 to 1996 (Appendix 7), this regression was used to estimate the fraction of wild shad from the Upper Bay stock from 1989 to 1992. Since there are no data on the fraction of wild fish from the Conowingo Dam before 1989, the average fraction of wild fish from the Upper Bay stock from 1993 to 1996 (mean $=0.52$) also was used to estimate the number of wild shad from the Upper Bay stock between 1980 and 1988. To determine whether or not the hatchery component of the Upper Bay stock was largely responsible for the upward trend in stock size, we examined the trend in the stock abundance of wild and hatchery-reared shad from the Upper Bay stock between 1980 and 1996.

The contribution of Upper Bay shad to the coastal intercept fishery between 1980 and 1996 (Tables 3 and 4) was based on coastal landings from SC to NY (Table 2) and the combined tagging and mtDNA results (Hattala et. al. 1997). The estimated coastal landings from the Upper Bay in weight (Table 3) and number (Table 4) (assumed average weight $=4.0 \mathrm{lbs}$.) were adjusted upward to reflect an assumed 50% reporting rate for commercial landings. Bay fishing mortality $\left(\mathrm{F}_{\mathrm{r}}\right)$ on American shad between 1960 and 1965 was estimated as a log ratio between inriver commercial landings in numbers (C) and stock size (N) (equation 1) (Appendix 7), assuming a 50% reporting rate. Since the coastal harvest of Upper Bay shad is assumed to have occurred before the spawning stock enters the Upper Bay, coastal fishing mortality $\left(F_{c}\right)$ from the Upper Bay shad was estimated, as for other shad stocks, from 1980 to 1996 as a \log ratio (equation 2) between the coastal landings in number (CCL) (adjusted up to reflect an assumed 50\% reporting rate) from the Upper Bay (Tables 3 and 4), and the population size (N) from the Upper Bay plus the coastal harvest (CCL). Total fishing mortality (F_{t}) on Upper Bay shad between 1980 and 1996 was estimated by adding F_{c} and F_{r}. Since total mortality rates (Z) were estimated from the Upper Bay from 1985 to 1995, natural mortality rates (M) for adult shad were estimated for those years by subtraction (i.e. $\mathrm{M}=\mathrm{Z}-\mathrm{F}_{\mathrm{t}}$).

Juvenile recruitment has been estimated Bay-wide for the 1980-1995 year-classes based on annual beach seine surveys (Weinrich 1995). Spawning stock biomass (SSB) from the Upper Bay was estimated from 1980 to 1996 by subtracting the commercial landings in weight each year from the population estimate in weight (assuming 4.0 lbs . per fish).

Virginia Rivers

The Virginia Marine Resources Commission (VMRC) has monitored commercial shad landings in the James, York, and Rappahannock Rivers from 1973 to 1993 (O'Reilly 1995). Commercial shad landings (lbs.) have been separated by inriver and coastal landings from 1973 to 1996 (Appendix 8). Since mandatory reporting of commercial landings began in Virginia during 1993, the assumption was made here that the pre-1993 landings data reported to Virginia had constituted 70% of the post-1992 landings. As a result, the pre-1993 landings data have been increased by 30% to reflect a 70% reporting rate (Rob O'Reilly pers. comm.).

The contribution of Virginia shad to the coastal intercept fishery between 1980 and 1996 (Tables 3 and 4) was based on coastal landings from SC to NY (Table 2) and the VA/MD mtDNA analysis (Brown and Epifanio 1994) of Rudee, Wachapreague and Ocean City data from 1980-88. The 1989-96 composition was based on mtDNA from Wachapreague (1992/93) and Ocean City (1992) collections (Hattala et al. 1997). The estimated coastal landings emanating from Virginia Rivers in weight (Table 3) and number (Table 4) (assumed average weight $=3.7 \mathrm{lbs}$.) were then estimated. To estimate the contribution of coastal intercept landings from the James, Rappahannock and York Rivers from 1980 to 1993, the total coastal landings estimated from Virginia Rivers were separated into the York (0.433 *coastal landings), Rappahannock ($0.049 *$ coastal landings) and James ($0.518 *$ coastal landings) Rivers based on the average contribution of inriver commercial shad landings by river system from 1973 to 1993 (Appendix 8).

Although there are no directed inriver fishing effort data by river system, nominal fishing
effort data, expressed as total length (M) of stake gillnets used each year, are available based on inriver commercial logbooks compiled by fishermen for the Virginia Institute of Marine Sciences (VIMS) from 1980 to 1993 from the York, Rappahannock and James Rivers (Appendix 8). No inriver landings and effort data were available from 1994 to 1996 due to the moratorium on shad commercial fishing in 1994. Relative shad abundance based on the inriver commercial fisheries from each river was monitored from 1980 to 1993 in the York, James and Rappahannock Rivers by CPUE (sexes combined) (i.e. inriver commercial landings/length of net from gillnet).

To determine the potential impact from the coastal intercept fishery on Virginia shad stocks, relative exploitation (relu) on the James, Rappahannock and York River stocks between 1980 and 1993 was estimated as a ratio between the estimated coastal landings in numbers (Cst) from each river (Table 4) and inriver CPUE from each of the three stocks (James, Rappahannock and York Rivers):

$$
\begin{equation*}
\mathrm{u}_{\mathrm{rel}}=\text { Cst } / \text { CPUE. } \tag{4}
\end{equation*}
$$

If a rise in relative exploitation ($\mathrm{u}_{\mathrm{rel}}$) was coupled with a decline in stock size (ie CPUE), then this would represent presumptive evidence that the coastal intercept fishery was adversely affecting shad stock abundance.

Juvenile abundance indices were also conducted from the Mattaponi and Pamunkey Rivers (tributaries of the York River) for most years between 1979 and 1996 (Appendix 8) (Dixon et. al 1995).

North Carolina Rivers

The state of North Carolina has monitored commercial shad landings from Albemarle Sound, Cape Fear River, Neuse River, Pamlico River and Atlantic Ocean from 1972 to 1996 (Winslow 1995). Total mortality (Z) estimates have been made on adult shad from Albemarle Sound tributaries between 1972 and 1993 based on the linear regression of repeat spawners (Gibson et. al. 1988) (Appendix 9). There are no fishing effort data reported to the SSAS from specific NC river systems. Coastal intercept shad landings emanating from North Carolina rivers between 1980 and 1995 (Tables 3 and 4) were estimated from coastal intercept landings between SC and NY (Table 2) and from the combined tagging and mtDNA results (Hattala et. al. 1997).

Juvenile abundance indices based on bag seine surveys have been estimated from tributaries of Albemarle Sound from 1972 through 1995 (Appendix 9). Except for 1985, juvenile shad indices have approached zero (mean index < 0.4 fish/haul) in Albemarle sound, even during years (1982-1988) of high shad landings (Appendix 9). Given that no juvenile shad have been taken in this survey between 1989 and 1994 (i.e. index was 0.1 fish/haul in 1995 and 1996), this survey probably does not capture enough fish to provide a meaningful relative index of juvenile abundance.

South Carolina Rivers

The state of South Carolina has monitored commercial shad landings (lbs.) and a subsample of fishing effort (gillnet 100 yds.*hrs.) for the gillnet fishery from certain reaches of the Savannah, Edisto, Santee, and Waccamaw- Pee Dee Rivers from 1979 to 1995 (Appendix 10) (McCord 1995). The fishing effort data (100 yds.*hrs.), however, were not considered to be a random subsample from each river (Billy McCord SCDNR pers. comm.) and are therefore likely to be a biased estimate of relative fishing effort in these rivers. For this reason, the fishing effort data were not used in this assessment to estimate inriver fishing mortality rates from 1979 to 1995.

Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ recently have been (from 1989 to 1990 and from 1994 to 1997) estimated in the Edisto and Santee Rivers based on tag-recapture studies (McCord 1997, see Appendix 10). Although tag reporting was believed to be 100% in the Edisto River based on return rates between 50 dollar and 6 dollar reward tags (McCord 1991), SSAS believe it is unreasonable to assume 100% tag reporting. For this reason, the tag reporting rate in these studies (McCord 1995) was assumed to be 90% based on the results for the Santee River in 1991 and 1992 (Billy McCord SCDNR pers. comm.). We also assumed a 5\% reduction in tags (M) due to the combined effects of tag loss and tag-induced mortality rate in the Edisto and Santee Rivers. This percentage (5\%) was based on shad tagging studies in the Connecticut River (Leggett 1976; Crecco and Savoy 1987). As a result, 5% of the tagged fish (M) were removed before the annual fishing rates (u) were estimated:

$$
\begin{equation*}
\mathrm{u}=\mathrm{R} / \mathrm{M}) . \tag{5}
\end{equation*}
$$

In addition, since tag recoveries were reported from the coastal intercept fishery, we deducted these coastal recoveries from the original pool of inriver tags (M) for the Edisto and Santee stocks. Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ were estimated based on adjusted tags $\left(\mathrm{M}^{\prime}\right)$ and recoveries (R') for the Edisto stock in 1989-90 and from 1994-97 and for the Santee stock from 1991-92 by:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{r}}=-\log \left(1-\left(\mathrm{R}^{\prime} / \mathrm{M}^{\prime}\right)\right) . \tag{6}
\end{equation*}
$$

The current average inriver fishing mortality rate $\left(\mathrm{F}_{\mathrm{r}}\right)$ on Edisto River shad was based on the F_{r} estimates from 1994 to 1997.

Shad population size for the Santee River was estimated indirectly from 1990 to 1996 (Appendix 10) based on annual fishlift counts from the Santee-Cooper Rediversion Canal (McCord 1997). Since it was assumed that about 40% on average of the Santee shad run is passed annually at the fishlift from 1990 to 1996 (Billy McCord pers. comm.), total shad population size from 1990 to 1996 was estimated by dividing the annual lift counts by 0.4. It is clearly evident that annual harvest rates (u) on Santee River shad in $1991\left(\mathrm{U}_{91}=0.13\right)$ and $1992\left(\mathrm{U}_{92}=0.17\right)$ based directly on tagging (equation 5) were 4.24 times greater than harvest rates (u) generated by the ratio of reported inriver commercial landings in numbers (assumed average weight $=3.5 \mathrm{lbs}$.) to estimated stock size (Table 5). This disparity strongly suggests that reported commercial landings in the Santee River have been underreported by about 424\%. For this reason, all inriver commercial landings from the Santee, Edisto, Savannah and Waccamaw-Pee Dee Rivers were adjusted upward by 424% to reflect underreporting. After harvest estimates (u) have been
estimated on Edisto River shad in 1989, 1990, and from 1994 to 1997 based on equation 6, population size (N) for Edisto shad was estimated in those years as a ratio between the adjusted commercial harvest in numbers $\left(\mathrm{C}^{\prime}\right)$ and the annual harvest rate (u) :

$$
\begin{equation*}
\mathrm{N}=\mathrm{C}^{\prime} / \mathrm{u} . \tag{7}
\end{equation*}
$$

The contribution of South Carolina shad in the coastal intercept harvest was based on coastal shad landings from SC to NJ (Table 2) and the tagging and mtDNA studies (Hattala et. al. 1997). Although a 424% underreporting rate was estimated for the inriver commercial landings in the Santee River, the coastal landings attributed to South Carolina Rivers were adjusted upward to reflect an assumed 50% reporting rate. McCord et al. (1987) reported that 68% of the coastal landings off Winyah Bay were recaptured in the Waccamaw-Pee Dee River, but this estimate is probably too high (Glen Ulrich pers. comm. SC DNR) because the fish were tagged near the mouth of the Waccamaw-Pee Dee River. The coastal landings from SC (Tables 3 and 4) were partitioned among the four rivers (5.3% for Edisto, 50.2% for Waccamaw-Pee Dee, 27.1% for Santee and 17.4% for Savannah Rivers) according to the long-term average percentage composition of the commercial landings from each river between 1979 and 1996 (Appendix 10). Since the coastal harvest of SC shad stocks is assumed to occur before the spawning stock enters their respective river, coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ on Edisto and Santee River shad were estimated for selected years between 1989 and 1997 as a log ratio (equation 2) between adjusted coastal landings in number (CCL) ascribed to each river, and the population size (N) plus the coastal harvest (CCL) from each river system. Total fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ between 1980 and 1995 was estimated by adding F_{c} and F_{r}.

Juvenile abundance indices have not been estimated in any of these shad rivers.

Altamaha River GA

The state of Georgia has estimated the stock abundance of American shad in the Altamaha River from 1982 through 1996 by tag-recapture studies (Deener 1995) (Appendix 11). Inriver commercial landings from the Altamaha have been monitored since 1982 by a roving creel census (Michaels 1991). The data from 1982 to 1991 were used to develop a linear regression model $\left(\mathrm{r}^{2}=0.80\right)$ between the reported and adjusted commercial landings. This model was used to adjust the 1992-96 reported commercial landings. The results of theses studies showed that commercial fishermen have underreported their landings on average by about 100% (i.e. they report on average one out of two shad from 1982 to 1996). Inriver fishing mortality rates (F_{r}) (sexes combined) from 1982-96 were estimated by converting the annual harvest rates $\left(\mathrm{U}_{\mathrm{r}}\right)$ given in Deener (1995). Juvenile abundance indices also have been conducted in the Altamaha River from 1982 to 1991, but were discontinued thereafter because the index did not relate with subsequent recruitment to the adult stock (Ron Michaels pers. comm.).

The coastal intercept harvest attributed to all Georgia stocks were based on the coastal harvest from SC to MD (Table 2) and the tagging and mtDNA studies (Hattala et. al. 1997). According to McCord (1987), the Altamaha River comprised about 61% of the tag recoveries from Georgia rivers of fish originally tagged off SC. Hence, the coastal intercept landings from the

Altamaha (Appendix 11) were estimated by multiplying the coastal landings emanating from Georgia Rivers (Tables 3 and 4) from 1980 to 1995 by 0.61 and then by 2.0 to reflect an assumed 50% reporting rate. Given that the coastal harvest of Altamaha River shad occurs before the shad spawning stock has entered the river, coastal fishing mortality $\left(\mathrm{F}_{\mathrm{c}}\right)$ was estimated from 1982 to 1996 as a log ratio (equation 2) between the coastal landings in number (CCL) from the Altamaha river (average weight $=3.1 \mathrm{lbs}$., Bert Deener pers. comm. GA DNR) and the population size (N) plus the coastal harvest (CCL). Total fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ between 1980 and 1996 was estimated by adding F_{c} and F_{r}.

Adult recruitment in numbers (R) to the Altamaha spawning population for the 19821990 year-classes has been estimated based as the number of virgin shad (ages 4,5 and 6) (Michaels 1995) in the adult shad population from 1983 to 1996. Spawning stock biomass (SSB) from the Altamaha was estimated from 1982 to 1996 by subtracting the commercial landings in weight each year from the population estimate in weight (assuming 3.1 lbs . per fish, Ron Michaels GA DNR pers. comm.).

Biological Reference Points

The Thompson-Bell yield-per-recruit (YPR) model (Appendix 12) was used to derive an overfishing definition for American shad based on a F_{c} biological reference point. The F_{30} level refers to the fishing mortality rate that generates 30% of maximum spawning potential for an unfished stock $(\mathrm{F}=0)$ as measured in the YPR model by biomass-per-recruit $(\mathrm{B} / \mathrm{R})$. In the last assessment (Gibson et. al 1988), $\mathrm{F}_{\text {msy }}$ was used as an overfishing definition for American shad. However, the magnitude of $\mathrm{F}_{\mathrm{msy}}$ is very sensitive to the stock-recruitment properties of each shad stock. During our current assessment, the SSAS concluded that the relative precision of the stockrecruitment parameters for the Shepherd model was poorly estimated for most shad stocks, thereby reducing the usefulness of $\mathrm{F}_{\text {msy }}$ as an effective overfishing definition. For this reason, the F_{30} criterion was chosen by the SSAS to replace $\mathrm{F}_{\text {msy }}$.

The F_{30} level for each stock was estimated based on the growth rates, natural mortality rates (M), maturation schedule, partial recruitment vector (PR) and a range of fishing mortality rates $(F=0$ to 1.5 by 0.01) (Table 6). Since there are currently no minimum size limits imposed on any stocks of American shad, the YPR model was run with no minimum size limits. Given that the Shad Stock Assessment Subcommittee (SSAS) agreed earlier (Gibson et al. 1988) that changes in egg-per-recruit are directly proportional to changes in biomass-per-recruit (B/R), the female B / R values from the YPR model were used to express relative changes in reproductive effort for American shad following a reduction in fishing mortality. The model runs were made at 0.01 increments of F (F range: 0.0 to 1.3) assuming a range of natural mortality rates ($\mathrm{M}=0.6$ to 2.5) for adult female shad (ages 4-12) depending on latitudinal distribution.

Leggett and Carscaddan (1978) were among the first to document latitudinal differences in shad life history traits such as size-at-age, percentage of repeat spawning and fecundity per unit weight. For all model runs, natural mortality (M) among subadult shad (ages 1-4) was assumed to be constant at 0.3 (Table 6) based on size-based theory (Boudreau and Dickie 1987) and on stagespecific mortality estimates for American shad in the Connecticut River (Crecco and Savoy 1989).

The natural mortality rate (M) for adult (ages 4+) shad among northern stocks (Pawcatuck River RI to Upper Bay MD, exception for the Hudson River) was assumed to be constant at 1.50 based on the differences between total mortality (Z) and fishing mortality rates (F) in the Connecticut River (Leggett 1976; Crecco and Savoy 1987). Because of the relatively high (>40\%) percentage of repeat spawners among Hudson River shad (Hattala 1995), M for adult shad in the Hudson was assumed to be 0.60 . Given that the incidence of repeat spawning approaches zero for southern stocks (Waccamaw-Pee Dee R. SC to Altamaha R. GA), M was assumed to be constant at 2.5 among adult shad in these river systems (Table 6).

Gillnet studies on Connecticut River shad (Crecco and Savoy 1987) indicated that age 4 and age 5 female shad were partially ($\mathrm{PR}=45 \%$ for age 4 and 90% for age 5) recruited to commercial gilllnet fisheries (Table 6), whereas all other exploitable age groups (ages 6+) were assumed to be fully $(\mathrm{PR}=100 \%)$ recruited to commercial fisheries. In the absence of any documented landings data on age 1 to 3 shad, a PR vector of 0.0% was used for age 1 to 3 American shad. In all model runs, the PR vector was assumed to be constant (Table 6) for all YPR model runs. Biomass-per-recruit (B / R) levels were derived in the YPR model by the following expression:

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{n}} & \\
\mathrm{~B} / \mathrm{R} & =\mathrm{R}^{*} \mathrm{~S}^{*} \mathrm{~W}_{\mathrm{i}}^{*} \text { frac }_{\mathrm{i}} \\
\mathrm{i} & =\mathrm{Y}_{\mathrm{i}} \\
\text { where } \mathrm{R} & =\text { one female recruit entering the exploitable stock; } \\
\mathrm{W}_{\mathrm{i}} & =\text { age-specific weight (lbs); } \\
\mathrm{frac}_{\mathrm{i}} & =\text { the fraction of shad of age } \mathrm{i} \text { that is sexually mature; } \\
\mathrm{S} & =\text { survival rate between ages } \mathrm{i}-1 \text { and } \mathrm{i} ; \\
\mathrm{Y}_{\mathrm{i}} & =\text { earliest age of adult spawning; } \\
\mathrm{Y}_{\mathrm{n}} & =\text { latest age of adult spawning (} 12 \text { years). }
\end{aligned}
$$

Yield-per-recruit (Y/R) levels were also derived in the YPR model by the following general expression:

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{n}} & \\
\mathrm{Y} / \mathrm{R} & =\mathrm{R}^{*} * * \mathrm{~W}_{\mathrm{i}}^{*} * \mathrm{PR} \\
\mathrm{i} & =\mathrm{Y}_{\mathrm{i}} \\
\text { Where } \mathrm{R} & =\text { one female recruit entering the exploitable stock; } \\
\mathrm{W}_{\mathrm{i}} & =\text { age-specific weight (lbs); } \\
\mathrm{F} & =\text { the instantaneous fishing mortality rate occurring in the natal river; } \\
\mathrm{PR} & =\text { the partial recruitment vector of each age group to the commercial } \\
& \text { fisheries; } \\
\mathrm{Y}_{\mathrm{i}} & =\text { earliest age entering the natal exploited stock (age 4); } \\
\mathrm{Y}_{\mathrm{n}} & =\text { oldest age in the population (12 years). }
\end{aligned}
$$

Age-specific length $\left(\mathrm{L}_{\mathrm{i}}\right)$ and weight $\left(\mathrm{W}_{\mathrm{i}}\right)$ increments for shad were expressed by the von Bertalanffy growth equation estimated for each stock based on age-length data:

$$
\begin{align*}
\mathrm{L}_{\mathrm{i}} & =\mathrm{L} \quad *\left(1-\exp -\mathrm{K}\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right)\right),(8) \\
\mathrm{W}_{\mathrm{i}} & =\mathrm{W} \quad *\left(1-\exp -\mathrm{K}\left(\mathrm{t}-\mathrm{t}_{\mathrm{o}}\right)\right)^{3.0} \tag{9}
\end{align*}
$$

Where: L and W are the theoretical maximum length (inches) and weight (lbs), respectively;
$\mathrm{K}=$ rate at which L_{i} approaches L ;
$\mathrm{t}_{\mathrm{o}}=$ theoretical age at 0 length;
$\mathrm{t}=$ age in years.
The parameter estimates of K and t_{0} were derived from back calculated age- length data in the Connecticut River and the Upper Bay MD based on nonlinear least squares regression (Table 6). Since size-at-age is much larger for northern than for southern shad stocks (Leggett and Carscaddan 1978), W was assumed to be constant at 10 lbs . for northern stocks, 13 lbs . for the Hudson River based on recent age data (Hattala 1995) and 7 lbs. for southern shad stocks.

The age-specific maturity schedule ($\mathrm{frac}_{\mathrm{i}}$) for female shad was estimated indirectly based on the maturity-age ogives reported in the literature (ASMFC 1985).

RESULTS AND DISCUSSION

Abstract

Maine

The trend in relative juvenile production for Maine shad rivers showed no apparent decline from 1979 to 1995 (Figure 3). Dominant shad year-classes were evident in 1981, 1985 and 1990, although recent year-class (1994-95) production has been below average. Commercial shad landings from the coastal Maine commercial fisheries were relatively stable from 1979 to 1989, but have declined to very low levels thereafter (Figure 4). No inriver commercial landings have been reported from Maine Rivers, and there are neither fishing mortality estimates (F), fishing effort data, nor tagging studies for Maine shad rivers to determine the stock origin of coastal landings. As a result, we cannot determine whether the decline in Maine coastal shad landings (Figure 4) indicates a stock decline or a reduction in coastal fishing effort.

Merrimack River

The state of Massachusetts has monitored American shad relative abundance (shad lifted/day) at the Essex Dam fishlift on the Merrimack River from 1983 through 1995 (Brady 1995). Since shad relative abundance based on annual fishway counts has varied without trend from 1985 through 1995 (Figure 5), there is no evidence of a shad stock decline in the Merrimack River.

Pawcatuck River

Although shad population size (lbs.) in the Pawcatuck River has varied greatly from 1980 through 1996 , there is a steady decline in shad from 1992 (950,000 pounds) through 1994 (120,000 pounds), followed by a sharp resurgence in stock abundance in 1995 (330,000 pounds) and 1996 (750,000 pounds) (Figure 6). An increase in adult stock abundance in 1996 was fully expected based on the production of dominant year-classes in 1992 and 1993 (Figure 7). Although shad stock abundance in the Pawcatuck River has exhibited a decline from 1985 to 1996 (Figure 6), overall stock size has remained fairly stable from 1992 to 1996.

Total mortality rates (Z) of Pawcatuck River shad have exceeded 1.5 in most years between 1981 and 1989 (Figure 8), but have declined below 1.20 from 1990 to 1992. No total mortality estimates (Z) have been made in the Pawcatuck after 1992. There is neither a significant statistical ($\mathrm{P}<0.05$) relationship between Z and the coastal commercial shad landings from Rhode Island between 1981 and 1992 " $\mathrm{r} "=0.42 . \mathrm{P}<0.18$) nor between stock size and the Rhode Island coastal landings (Appendix 3). Hence, overfishing is probably not the major cause for the recent and temporary (1992-94) shad decline in the Pawcatuck River. Our conclusions are tempered somewhat by the fact that no stock origin studies have ever been conducted on the coastal Rhode Island shad landings which, in theory, could easily have overharvested the small Pawcatuck stock. Before we can rule out overfishing, it would be beneficial to estimate fishing mortality (F) directly and to conduct a tagging study on the Rhode Island coastal fishery to determine stock origin.

Juvenile production (mean catch/seine haul) for the 1992, 1993 and 1994 year-classes was
the highest since 1985, although the 1996 year-class appears to be weak (Figure 7). Assuming a qualitative relationship between juvenile production in year t and subsequent adult recruitment in year $t+4$ and $t+5$, adult stock size in the Pawcatuck River should continue to rise between 1997 and 1999 due to the strength of the 1992, 1993 and 1994 year-classes.

Connecticut River

Shad population size for the Connecticut River has varied greatly from 1975 through 1996 (Figure 9), but a recent decline (1993-95) in shad stock abundance was evident from 1.6 million fish in 1992 to a low of about 305,000 fish in 1995. Shad population abundance has risen recently in 1996 (667,100 fish) and 1997 (725,000 fish) to levels approaching the long-term (1966-95) average (800,000 fish) (Figure 9). Inriver fishing mortality rates (F_{r}) on Connecticut River shad have remained low but highly variable ($\mathrm{F}_{\mathrm{r}}=0.09$ to 0.35) between 1975 and 1996 (Figure 10). Recent (1992-96) F_{r} levels have averaged 0.13 (Table 7). Coastal fishing mortality rates (F_{c}) on Connecticut River shad have also varied without trend from about 0.15 to 015 between 1980 and 1996 (Figure 11). Total fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$ have also remained fairly stable from 1980 to 1996 (Figure 12). Since the current (1992-96) average total fishing mortality rate $\left(\mathrm{F}_{\mathrm{t}}=0.22\right)$) on Connecticut River shad is well below the overfishing definition (F_{c} level of 0.43) (Table 7), there is no evidence that overfishing was the primary cause for the recent stock decline.

The pattern of adult stock decline in the Connecticut River (Figure 9) is very similar to that on the nearby Pawcatuck River, Rhode Island (Figure 6) located some 30 miles to the east from 1990 to 1995 " $\mathrm{r} "=0.96, \mathrm{P}<0.001$). In addition, juvenile shad production on the Connecticut River was persistently high from 1989 to 1994 (Figure 13), which should have resulted in a significant rise in adult stock size from 1993 to 1995, yet stock size actually dropped by about 300% (Figure 9). Savoy and Crecco (1995) reported based on recent juvenile production, that in order for overfishing to have caused the recent stock decline in the Connecticut, total fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ after 1989 would have to exceed 1.50 , resulting in commercial landings that should have approached 3.0 million lbs. annually.

Strong year-class production in the Connecticut (Figure 13) has followed a pattern that was very similar to that observed in the nearby Pawcatuck River (Figure 7). These similarities in stock trends and juvenile production strongly suggest that the proximal cause for the Connecticut stock decline also has been operating on Pawcatuck shad. Since nearly all the evidence for the recent shad decline in the Connecticut pointed directly to enhanced striped bass predation from below the Holyoke Dam (Savoy and Crecco 1995), it is very likely that the recent shad decline in the Connecticut and nearby Pawcatuck River is directly related to striped bass predation and not overfishing.

Hudson River

Shad population size in the Hudson River based on Talbot's (1954) estimate of q has varied greatly from 1980 to 1996 (Figure 14), but has generally declined from about 2.3 million fish in 1980 to a low 404,000 fish in 1996. Inriver commercial landings declined from about 2.6 million lbs. in 1980 to less than 250,000 lbs. in 1996 (Figure 15). Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ (Figure 16) have generally declined from a high of 0.44 in 1984 to less than 0.19 after 1990. By contrast, coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ on Hudson River shad have risen since the mid1980's from about 0.08 to 0.19 in 1996 (Figure 17). Total fishing mortality rates (F_{t}) on Hudson shad have remained stable and independent of the stock decline from 1980 to 1996 (Figures 18 and 14). Moreover, the current (1992-96) average total fishing mortality rate $\left(F_{t}=0.33\right)$ on Hudson River shad (Table 7) was below the overfishing definition (F_{c} level of 0.39) for the Hudson stock. Based on these data, current fishing mortality $\left(\mathrm{F}_{\mathrm{t}}=0.33\right)$ indicates that the Hudson shad stock is fully exploited, allowing for about 35% of maximum spawning potential ($\% \mathrm{MSP}$) under steadystate conditions. Although there is ample evidence of a shad stock decline in the Hudson, there is no evidence that overfishing was the primary cause for this decline.

Shad population size in the Hudson River based on the 1995 tag-recapture estimate (Hattala 1997) of q were on average about 33% greater (Figure 19) than those derived by Talbot (1954) (Figure 14). Shad population abundance in the Hudson varied greatly from 1980 to 1996 (Figure 19), but has generally declined form about 3.3 million fish in 1980 to a low 536,000 fish in 1996. Inriver fishing mortality rates (F_{r}) (Figure 20) based on the 1995 population estimate (Hattala 1997) were about 33% lower than those based on Talbot (1954) (Figure 16), and have generally declined form a high of 0.30 in 1984 to less that 0.13 thereafter. By contrast, coastal fishing mortality rates (F_{c}) on Hudson River shad have risen during the mid-1980's from abut 0.05 to 0.14 in 1996 (Figure 21). Total fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$ on Hudson shad have remained stable and independent of the stock decline form 1980 to 1996 (Figures 22 and 19). Moreover, current (1992-96) average total fishing mortality rate ($\mathrm{F}_{\mathrm{t}}=0.24$) on Hudson River shad (Table 7) was well below the overfishing definition (F_{c} level of 0.39) for the Hudson stock, which is consistent with results based on current F estimates from Talbot (1954) (Table 7). Based on fishing mortality rates derived from the 1995 tag-recapture (Hattala 1997), current magnitude of fishing mortality $\mathrm{F}_{\mathrm{t}}=0.24$) indicates that the Hudson shad stock is partially exploited, allowing for about 47% of maximum spawning potential (\%MSP) under steady-state conditions.

Year-class production in the Hudson has been high and relatively stable from 1981 to 1994 (Figure 23), so there is no evidence of recruitment failure. Juvenile production in the Hudson was generally highest from 1986 to 1990 (Figure 23), yet adult stock size during the mid-1990's continued to decline to historic low levels (Figures 14 and 19). Assuming a positive relationship between juvenile production in year t and subsequent adult recruitment in year $t+4$ and $t+5$ for the Hudson spawning stock, the recently observed decline in the Hudson River shad stock would be impossible to predict based on the relatively modest inriver and coastal landings (Appendix 5). Moreover, the magnitude of the stock decline would be difficult to relate to overfishing unless fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$ from 1988 to 1995 had risen by at least 300% (i.e. from about 0.30 to 0.90). For these reasons, it is likely that some other biotic factors (possibly striped bass predation) other than overfishing, or perhaps some abiotic factors have caused the recent decline
in the Hudson River shad stock.

Delaware River

Total shad population abundance (river population plus coastal landings) in the Delaware River has fluctuated greatly from 1980 to 1996 (Figure 24) from a low of 228,000 fish in 1980 to a high of nearly 1.1 million adult shad in 1990. Although shad population abundance in the Delaware River declined from 1992 to 1995 (Figure 24), the 1996 population size (899,930 fish) was the fifth highest in the time series (1980-1996). Juvenile production in the Delaware has remained relatively stable from 1980 through 1996, with dominant year-classes occurring in 1983, 1990, 1993 and 1996 (Figure 25). There is clearly no evidence that the Delaware River shad stock has undergone recruitment failure or has experienced a sharp population decline since 1992.

Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ on Delaware River shad have been very low (F_{r} less than 0.14) since 1980 (Figure 26). The F_{r} estimates have varied without trend from a low of 0.004 in 1981 to a high of 0.029 in 1990. The recent (1992-96) average F_{r} rate of 0.02 (Table 7) is well below the overfishing definition $\left(\mathrm{F}_{\mathrm{c}}=0.43\right)$ for this stock. Coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ on Delaware River shad have been much higher (5 to 10 times greater in most years) than inriver fishing rate (F_{r}), but have remained relatively stable from 1980 to 1996 (Figure 27), from a low of 0.12 in 1981 to a high of 0.30 in 1983. The recent (1992-96) average F_{c} rate on Delaware River shad was 0.15 . Total fishing mortality rates $\left(\mathrm{F}_{\mathrm{t}}\right)$ have varied without trend from 1980 to 1996 (Figure 28). The recent (1992-96) average total fishing mortality rate $\left(\mathrm{F}_{\mathrm{t}}\right)$ on Delaware River shad of 0.17 (Table 7) was well below the overfishing definition $\left(\mathrm{F}_{30}=0.43\right)$ for this stock (Table 8). Hence, there is no evidence that the Delaware River shad stock has been overfished since 1980.

Upper Bay

Total shad population abundance (inriver stock size plus coastal landings from Upper Bay) from the Upper Bay (Weinrich 1995) increased steadily from a low of about 14,000 fish in 1980 to a high of 342,000 fish in 1995; the 1996 population size dropped to 213,000 fish in 1996 (Figure 29). When the estimated hatchery component of the adult shad stock was removed, the trend in adult stock abundance of wild fish was nearly identical to the total stock trend (Figure 30), indicating that the recent rise in the total Upper Bay stock was not driven solely by the recent rise in hatchery-reared fish. The overall trend in shad recruitment, based on juvenile abundance, to the Upper Bay stock (Figure 31) has generally increased from 1984 through 1995. Dominant yearclasses were evident in 1989 and 1995 (Figure 31). There is no evidence that the shad stocks from the Upper Bay have experienced recruitment failure or a recent adult stock decline.

Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ on Upper Bay shad have been zero from 1980 to 1996 due to the moratorium. Coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ have declined since 1980 from a high of 0.77 in 1984 to a low of 0.02 in 1995 (Figure 32). Since coastal landings have completely dominated the total shad commercial landings from the Upper Bay since 1980, the trend in total fishing mortality $\left(\mathrm{F}_{\mathrm{t}}\right)$ is the same as the trend in coastal fishing mortality $\left(\mathrm{F}_{\mathrm{c}}\right)$ (Figure 32). The recent (1992-96) average F_{t} rate on Upper Bay shad of 0.11 (Table 7) was considerably below the
overfishing definition $\left(\mathrm{F}_{30}=0.43\right)$ for the Upper Bay stock (Table 7). Natural mortality (M) of adult shad was estimated by subtracting F_{t} from the total mortality (Z) estimates from 1986 to 1995 (Figure 33). The average natural mortality rate (M) based on the 1986 to 1996 estimates for the Upper Bay stock was $1.89(\mathrm{SE}=0.13)$, which was slightly higher than the assumed M of 1.5 for adult shad used in the Thompson-Bell Model (Table 6).

Virginia Rivers

The trends in inriver shad commercial landings from the James, York and Rappahannock Rivers have declined steadily from 1973 through 1987 (Appendix 8); thereafter landings remained low and have varied without trend. Shad commercial catch-per-effort (female CPUE) based on inriver landings in the Rappahannock River generally rose from 1980 to 1989, but CPUE declined steadily thereafter (Figure 34). Shad CPUE for the York River has declined steadily from a high in 1980 to the lowest level in 1993 (Figure 35). By contrast, CPUE for the James River has varied without trend from 1980 to 1993 (Figure 36). These data strongly suggest that shad stock abundance in the Rappahannock and York Rivers has recently declined to low levels at least since 1993.

Relative exploitation rates ($\mathrm{u}_{\mathrm{rel}}$) from the coastal fishery on the Rappahannock River stock have varied without trend from 1980 to 1993 (Figure 37). The $u_{\text {rel }}$ levels from the coastal intercept fishery on the York River stock rose steadily from 1980 to a high in 1988 after which $\mathrm{u}_{\text {rel }}$ levels dropped abruptly to 1985 to 1987 levels (Figure 38), suggesting that the coastal intercept fishery has not had an adverse impact on the York River shad stock after 1987. Although relative exploitation rates on James River shad were highest in 1986 and 1987, there is no apparent trend in $\mathrm{u}_{\mathrm{rel}}$ from the coastal intercept fishery on the James River stock from 1980 to 1992 (Figure 39). Since relative exploitation rates from the coastal fishery have not exhibited a clear rise for any of the three stocks from 1980 to 1993 (Figures 37-39), there is no evidence that the coastal commercial shad fishery has had an adverse effect on relative stock abundance in the James, Rappahannock and York Rivers since 1993. Since coastal landings from Virginia Rivers have continued to decline from 1993 to 1996 (Figure 40), there is no reason to believe that the coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ have risen on the James, York and Rappahannock River stocks since 1993. The apparent shad stock declines in the York and Rappahannock Rivers based on CPUE (Figures 34 and 35) do not appear to be related to overharvest by the coastal intercept fishery.

Juvenile abundance indices in the Mattaponi River have varied without trend from 1980 through 1994; the 1996 index is clearly the strongest of the time series (Figure 41). The juvenile indices from the Pamunkey were very low in 1992 and 1993, but the two highest juvenile index in the time series occurred in 1994 and 1996 (Figure 42). There is no clear evidence of recent recruitment failure in the Pamunkey and Mattaponi Rivers (Figures 35 and 36).

Albemarle Sound NC

Shad landings data from Albemarle Sound were relatively stable from 1982 through 1990, but declined steadily thereafter (Figure 43). The recent (since 1991) downward trend in shad landings strongly suggests a serious decline in overall abundance of Albemarle Sound shad. By
contrast, coastal shad landings attributed to North Carolina rivers have remained stable from 1984 to 1996 (Figure 44). Moreover, since total mortality rates (Z) on Albemarle Sound shad have also remained stable from 1982 through 1993 (Figure 45), it is unlikely that overfishing is the proximal cause of the apparent shad decline in Albemarle Sound.

Pamlico, Neuse and Cape Fear Rivers NC

Inriver commercial shad landings data from the Pamlico, Neuse and Cape Fear Rivers have declined to low levels from about 1987 to 1996 (Figures 46-48). There are neither fishing mortality estimates (F), fishing effort data, nor tagging studies for these three stocks. As a result, we cannot determine whether or not the decline in inriver commercial landings (Figures 43 and 46 to 48) indicates a stock decline or a reduction in inriver fishing effort. Since fishing mortality rates have not been estimated directly for North Carolina Rivers, there is clearly a need to estimate fishing mortality (F) and stock size based on tag-recapture studies.

Waccamaw-Pee Dee, Santee, Edisto and Savannah Rivers SC

Inriver commercial shad landings data from the Waccamaw-Pee Dee, Edisto and Savannah Rivers have either declined to low levels since 1989 or have remained low since 1985 (Figures 49-51). Since there are no recent fishing mortality (F) estimates for the Waccamaw-Pee Dee and Savannah Rivers, we cannot determine whether or not the decline in inriver commercial landings in these systems (Figures 43 and 45) indicates a stock decline or a recent reduction in inriver fishing effort. By contrast, inriver shad landings in the Santee River have risen exponentially from 1994 to 1996 (Figure 52) which is consistent with the recent dramatic increase in population abundance in the Santee based on fishway counts (Figure 53). Shad population size from the Edisto River in 1989 and 1990 and from 1994 to 1996 (Figure 54) based on tag-recapture studies (McCord 1997) has displayed only a modest decline, suggesting the recent drop in inriver commercial landings for the Edisto is largely due to a reduction in inriver commercial fishing effort.

Inriver $\left(\mathrm{F}_{\mathrm{r}}\right)$ and coastal $\left(\mathrm{F}_{\mathrm{c}}\right)$ fishing mortality rates are available for the Edisto River shad in 1989, 1990, and from 1994 to 1997 (Table 8). Similar F estimates are also available for the Santee River stock from 1990 to 1996 (Table 8). Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ for the Edisto River stock have declined steadily from a high of 0.67 in 1989 to a low of 0.13 in 1996 (Table 8). The recent average (1994 to 1997) inriver fishing rate $\left(\mathrm{F}_{\mathrm{r}}\right)$ of 0.21 in the Edisto (Tables 7) was far below the overfishing definition $\left(F_{c}=0.43\right)$ for southern rivers. When the coastal average (1994 to 1997) fishing rates (mean $\mathrm{F}_{\mathrm{c}}=0.24$) were added to F_{r}, the total current average $\mathrm{F}\left(\mathrm{F}_{\text {total }}=0.45\right)$ on Edisto shad (Table 7) was slightly below the overfishing definition of $\mathrm{F}_{\mathrm{c}}=0.48$. As a result, the Edisto shad stock is considered to be fully exploited but not overfished. Since the recent (199497) average F_{t} level of 0.45 is only slightly below the overfishing definition ($F_{c}=0.48$), both inriver and coastal fishing rates on Edisto River shad should be monitored closely during the next few years.

Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ for the Santee River has generally risen from 1990 to 1996 from a low of 0.06 in 1990 to a high of 0.33 in 1996 (Table 8). The current average F_{r}
(1992-96) of 0.17 was well below the overfishing definition $\left(F_{c}=0.48\right)$ for southern stocks
(Tables 7). The coastal fishing mortality rates (F_{c}) on the Santee stock have declined steadily from 0.22 in 1990 to 0.02 in 1996 (Table 8). The recent (1992-95) average total fishing rate ($\mathrm{F}_{\text {total }}$) was 0.19 (Table 7), which is still far below the F_{c} level of 0.48 . As a result, since the current average $\mathrm{F}\left(\mathrm{F}_{\text {total }}=0.19\right)$ for Santee River shad is less than half of the overfishing definition $\left(\mathrm{F}_{\mathrm{c}}=0.48\right)$ (Table 7), the Santee River shad stock is considered partially exploited and not overfished. This conclusion is consistent with the observed rapid rise in shad stock abundance from 1990 to 1996 (Figure 53).

Altamaha River

Population abundance (inriver stock plus coastal landings) in the Altamaha River has varied greatly from 1980 to 1996 (Figure 54), although stock abundance has risen recently from about 80,000 fish in 1990 to a time series high of 285,000 fish in 1996. Inriver commercial landings in the Altamaha River have generally increased from 1991 to 1996 (Figure 55), whereas coastal commercial landings have declined to low levels by 1996 (Figure 56). Inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ have generally exceeded 0.5 from 1980 to 1992 (Figure 57), but F_{r} levels have declined thereafter to about 0.30 to 0.45 from 1993 to 1996 . Coastal fishing mortality rates $\left(\mathrm{F}_{\mathrm{c}}\right)$ are much lower (F_{c} range: 0.01 to 0.09) than the inriver fishing rates and have declined steadily from 1990 to 1996 (Figure 58). Adult recruitment from the 1986 to 1991 year-classes has risen steadily in the Altamaha from 1990 to 1996 (Figure 59).

The recent average (1992-96) total fishing mortality rate $\left(\mathrm{F}_{\mathrm{t}}=0.39\right)$ on Altamaha River shad (Table 7) is below the F_{c} level of 0.48 for southern stocks. A current F_{t} level of 0.41 is equivalent to about 36% of maximum spawning potential (MSP). Since stock abundance has recently risen under moderately fishing mortality rates, the SSAS has concluded that the Altamaha River stock is fully exploited but not overfished. Since inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$ have exceeded the overfishing definition ($\mathrm{F}_{\mathrm{c}}=0.48$) as recently as 1991 (Figure 57), inriver fishing mortality rates should be monitored closely in the Altamaha during the next few years.

Other Rivers

This assessment estimated fishing mortality (F) rates for nine shad stocks and general trends in abundance for 13 American shad stocks (Table 1). The total range of extant American shad populations includes additional populations in small river systems, as well as depleted populations in larger river systems that are actively being restored. Also, much historical and habitat is currently vacant and may be targeted for restoration in the future. For these stocks, individual states have targeted minimal fishing mortality to protect small stocks and rebuild others. This assessment cannot quantitatively address these systems because of limited biological data, as well as associated uncertainties in stock composition of small populations in fisheries. Like all mixed stock fisheries, small stocks can be at risk under these conditions.

The problem of managing small shad stocks is clearly illustrated by the Pawcatuck River stock. For this population, stock assessment results suggested that overfishing was not the major cause of recent stock declines in the Pawcatuck. However, these results should be weighed against
the fact that no stock origin studies have ever been conducted on the Rhode Island coastal shad landings. From the magnitude of these landings, it is possible that the Pawcatuck population could be overharvested (ie, mixed stock landings biomass often exceeds biomass of the entire Pawcatuck River stock). Thus, for these smaller populations, it is important to estimate fishing mortality mortality directly and to conduct stock identification studies to determine stock composition in the mixed stock fishery. These data are needed to make fully informed management decisions.

LITERATURE CITED

Allen, R. L. 1995. New Jersey stock status report for American shad. Report to the Shad and River Herring Technical Committee, Sept. 6, 1995, 11 p.

Allen, R. L. 1996. New Jersey stock status report for American shad. Report to the Shad and River Herring Technical Committee.

ASMFC (Atlantic States Marine Fisheries Commission). 1985. Fishery management plan for the anadromous alosids stocks of eastern United States: American shad, hickory shad, alewife and blueback herring: Phase 2 in interstate planning for alosids of the Atlantic coast. Washington, DC.

Boudreau, P. R. and L. M. Dickie. 1989. Biological model of production based on physiological and ecological scaling of body size. Can. J. Fish. Aqua. Sci. 46:614-623.

Brady, D. 1995. Commonwealth of Massachusetts American shad stock status summary. Report to the Shad and River Herring Technical Committee, Sept. 6, 1995, 4 p.

Brown, B. L. 1992. Genetic analysis of American shad entering Chesapeake Bay. Ches. Bay Comm. Rep.

Brown, B. L. and J. M. Epifanio. 1994. Mixed-stock analysis of American shad in Virginia's and Maryland's coastal intercept fisheries. Report to Virginia Marine Resources Commission, Report \# F-110-R, 115 pp.

Chittenden, M. E. 1974. Trends in the abundance of American shad in the Delaware River Basin. Ches. Sci. vol. 15:96-103.

Crecco, V. A. 1995. Status of American shad in the Connecticut River, 1970-95. Report to the Shad and River Herring Technical Committee, Sept. 1995, 17p.

Crecco, V. A. and T. F. Savoy. 1987. Fishery Management Plan for American shad in the Connecticut River. Connecticut Dept. Envir. Prot. Bureau of Fihseries, 136 p.

Crecco, V. A. and T. F. Savoy. 1986. Connecticut River shad study. 1986 Final Report. Connecticut Dept. Envir. Prot. AFC 16, 112 p.

Crecco, V. A. and T. F. Savoy. 1985. Density-dependent catchability and its potential causes and effects on Connecticut River American shad. Can. J. Fish. Aquat. Sci. 42:1649-1657.

Crecco, V. A. and T. F. Savoy. 1981. Connecticut River shad study. 1981 Final Report. Connecticut Dept. Envir. Prot. AFC 10, 107 p.

Deener, B. 1995. Status of American shad in the Altamaha River. Report to the Shad and River

Herring Technical Committee, 6p.
Dixon, D. A., J. D. Goins, B. W. Hill and J. G. Loesch. 1995. A stock assessment program for Chesapeake Bay Fisheries: Development of an Alosa juvenile index of abundance. Completion Report NA46FU0393, 46p.

Fredin, R. A. 1954. Causes of fluctuations in abundance of Connecticut River shad. U. S. Fish and Wildlife Service Fishery Bulletin 54:247-259.

Gibson, M. R., V. A. Crecco and D. L. Stang. 1988. Stock assessment of American shad from selected Atlantic coast rivers. Atlantic States Marine Fisheries Commission. Special Report No. 15, 75p.

Harris, P.J. and R.A. Rulifson. 1989. Investigations of ocean landings for American shad and river herring from United States east coast waters. Completion report to the Atlantic States Marine Fisheries Commission, Washington, D.C. Contract 89-IPASRH, 92p.

Hattala, K. A., R. Allen and R. O'Reilly. 1997. Stock contribution for American shad landings in mixed stock fisheries along the Atlantic coast. Report to the Shad and River Herring Technical Committee, July 1997, 8 pp.

Hattala, K. A. 1997. Update on Hudson River American shad study. Memo to commercial shad fishermen on the 1995 American shad studies in the Hudson River. 2pp.

Hattala, K. A. 1995. American shad data from the Hudson River, 1930-95 used in the current stock assessment. Report to the Shad and River Herring Technical Committee, 24 p.

Hattala, K. A., R. V. Jesian and R. Allen. 1996. Summary of the 1995 tagging study of American shad along coastal New York. Report to the Shad and River Herring Technical Committee, 4 p .

Jesian, R. V., S. K. Gaichas, J. E. Serafy and C. H. Hocutt. 1992. Stock composition of coastal Maryland and Virginia American shad fisheries: 1992 tagging study. U. S. Dept. Interior, Final Report F267-92-008, 24p.

Klauda, R. J., M. Nittel and K. P. Campbell. 1976. Commercial fishery for shad in the Hudson River: fish abundance and stock trends, pp 107-134. In Proceedings of a Workshop on American shad. U. S. National Marine Fisheries Service. 14-16 Dec 1976.

Krantz, A. K., J. P. Mowrer, A. A. Jarzynski, R. V. Jesian and D. R. Weinrich. 1992. Investigation of anadromous alosids in Chesapeake Bay. U. S. Dept. Interior, Report F-37-R, 18p.

Leggett, W. C. 1976. The American shad with special reference to its migration and population dynamics in the Connecticut River, pp 168-225. In D. Merriman and L. W. Thorpe, eds.

The Connecticut River Ecological Study: The impacts of a nuclear power plant. Amer. Fish. Soc. Monogr. I. 252p.

Leggett, W. C. and J. E. Carscadden. 1978. Latitudinal variation in reproductive characteristics of American shad: evidence for population specific life history strategies in fish. J. Fish. Res. Bd. Can. 35:1469-1478.

Lorda, E, and V. A. Crecco. 1987. Stock-recruitment relationship and compensatory mortality of American shad in the Connecticut River. Am. Fish. Soc. Sym. 1:469-482.

Lupine, A. J. 1991. Summary of activities to American shad and River Herring. Annual Report to the Shad and River Herring Scientific and Statistical Committee, ASMFC, Aug. 12, 1991, 6 p .

McCord, B. 1997. The 1997 fishing mortality rates on shad in the Edisto and Santee Rivers based on tag-recapture studies. Report to the ASMFC Scientific and Statistical Committee, 6p.

McCord, B. 1995. Annual report to the Shad and River Herring Scientific and Statistical Committee, ASMFC, Sept. 6, 1995, 34p.

McCord, B. 1991. Monitoring and assessment of South Carolina's commercial shad fishery and incidental catch of sturgeon. Completion reports to National Marine Fisheries Service.

McCord, B., N. Jenkins, G. Ulrich. 1989. Monitoring and assessment of South Carolina's commercial shad fishery and incidental catch of sturgeons. Completion report to the NMFS. 45 pages.

Michaels, R. 1990. Population dynamics of the American shad in the Altamaha River. Interim Report 1985-90. Project No. G-3. Georgia Dept. Nat. Res. Game and Fish. 39 p.

Nichols, P. R. 1958. Effect of New Jersey-New York pound net catches on shad runs of Hudson and Connecticut Rivers. U. S. Dept. of the Interior, Fishery Bulletin 143, 58:491-500.

O'Reilly R. 1995. Commercial catch and effort data for American shad in Virginia Rivers. Report to the Shad and River Herring Technical Committee, 12p.

Parker, J. A. 1992. Migratory patterns and exploitation of American shad in the nearshore ocean waters of southeastern North Carolina. North Amer. J. Fish. Management. 12:752-739.

Powell, C. 1995. Annual report to Shad and River Herring Scientific and Statistical Committee, ASMFC. Report by the R. I. Div. Fish and Wildl. 10p.

Rulifson, R. A. 1994. Status of anadromous Alosa along the east coast of North America. Anadromous Alosa Symposium, 1994, pp. 134-158.

Savoy, T. and V. Crecco. 1995. Factors affecting the recent decline of blueback herring and American shad in the Connecticut River Report to the Atlantic States Marine Fisheries Commission, 46p.

Shirey, C. 1996. Status report for Delaware River shad through 1996. Report to the Shad and River Herring Technical Committee. 3p.

Shirey, C. 1995. Status report for Delaware River shad through 1995. Report to the Shad and River Herring Technical Committee, 2 p .

Squires, T. 1995. Shad landings and juvenile indices from the state of Maine. Report to the Shad and River Herring Technical Committee, 4 p .

Talbot, G. E. 1954. Factors associated with fluctuations in abundance of Hudson River shad. U. S. Fish and Wildlife Service Fish. Bull. 56:373-413.

Talbot, G. E. and J. E. Sykes. 1958. Atlantic coast migrations of American shad. U. S. Fish and Wildlife. Service Fish. Bull. 58(142):473-490.

Walburg, C. H. and R. P. Nichols. 1967. Biology and management of the American shad and status of the fisheries. Atlantic coast of the United States, 1960. U. S. Fish and Wildlife Serv. Spec. Sci. Rep. No. 550.

Weinrich, D. R. 1995. Status of American shad in Maryland. Report to the Shad and River Herring Technical Committee, Sept. 1995, 18p.

Winslow, S. E. 1995. American shad stock status in North Carolina. Report to the Shad and River Herring Technical Committee, Sept. 1995, 20p.

Table 1.American shad rivers or systems and the respective time series of fisheries-dependent and fisheries-independent data used in the 1996 stock assessment.

Rivers	Juv Production	Landings	Pop Size ${ }^{1 /}$	$\mathrm{F}^{2 /}$

Maine R.	yes	yes ${ }^{3 /}$	no	no
Merrimack R.	no	no	yes	no
Pawcatuck R.	yes	no	yes	yes
Connecticut R.	yes	yes	yes	yes
Hudson R.	yes	yes	yes	yes
Delaware R.	yes	yes	yes	yes
Upper Bay MD	yes	yes	yes	yes
James R.	no	yes	yes	yes
York R.	yes	yes	yes	yes
Rappahannock R.	no	yes	yes	yes
Albemarle Sound	yes	yes	no	yes
Neuse R.	no	yes	no	no
Pamlico R.	no	yes	no	no
Cape Fear R.	no	yes	no	no
Wacc-Pee Dee R.	no	yes	no	no
Edisto R.	no	yes	yes	yes
Santee R.	no	yes	yes	yes
Savannah R.	no	yes	no	no
Altamaha R.	yes	yes	yes	yes

1/ Either relative (CPUE) or absolute stock size;
2/ Either fishing (F), total mortality (Z) and/or relative exploition rates available.
3/ Only coastal shad landings are available for Maine.

Table 2. Landings (pounds $* 1000$) adjusted based on percent reporting.

\%>>	50\%	50\%	70\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
Year	SC	NC	VA	MD	DE	NJ	NY	RI	MA	NH	ME
1980	310	8	137	0	180	239	227	4	17	14	56
1981	299	215	394	0	369	261	117	63	33	11	181
1982	490	128	396	0	655	560	147	159	59	5	52
1983	411	8	297	40	436	393	66	47	27	7	77
1984	786	27	920	38	412	418	67	73	59	10	67
1985	275	6	475	300	345	430	188	182	45	15	32
1986	451	126	508	252	424	314	146	105	120	34	46
1987	719	82	565	239	492	369	23	208	82	83	53
1988	517	100	613	529	582	467	31	244	101	92	64
1989	456	77	571	976	433	798	46	84	27	61	93
1990	323	74	465	567	950	899	11	46	11	76	24
1991	289	38	571	468	1021	769	53	56	1	38	4
1992	218	48	617	398	548	571	42	27	1	20	3
1993	130	56	487	156	592	640	15	81	1	13	0
1994	144	68	204	67	452	434	12	36	0	43	2
1995	265	206	146	100	382	560	29	56	0	61	0
1996	444	116	232	190	530	420	51	0	0	0	0
No adjustment for Virginia, data from mandatory reporting 1993-96, R. O'Reilly The percent reporting used for all states needs resolving at TC level. KAH 8/19/97											

Year	FL	GA	SC	NC	VA	MD	Del. R.	Hud. R.	CT. R.	NECN
1980	5	23	205	147	24	14	202	163	246	162
1981	9	37	372	272	67	26	325	248	346	241
1982	10	45	429	312	67	38	581	443	464	260
1983	8	30	307	225	56	27	404	301	289	161
1984	18	59	668	498	159	44	476	325	356	274
1985	11	20	336	262	129	39	449	324	432	323
1986	13	42	493	370	127	37	409	294	410	315
1987	16	58	625	463	134	41	474	341	437	324
1988	18	44	605	462	190	54	596	420	536	412
1989	21	38	780	613	145	94	724	517	433	249
1990	14	29	543	424	97	84	932	684	462	171
1991	14	24	507	400	97	82	880	644	432	162
1992	13	19	466	371	95	68	611	437	287	123
1993	8	13	305	241	60	54	622	458	309	111
1994	5	15	201	152	26	31	420	316	221	74
1995	7	34	333	242	24	30	424	322	249	95
1996	10	40	438	323	39	38	463	341	215	66

ave.wt>>	3.5	3.1	3.5	4	3.7	4	4.5	4.8	5	5
Year	FL	GA	SC	NC	VA	MD	Del. R.	Hud. R.	CT. R.	NECN
1980	1	7	59	37	7	3	45	34	49	32
1981	3	12	106	68	18	6	72	52	69	48
1982	3	14	123	78	18	9	129	92	93	52
1983	2	10	88	56	15	7	90	63	58	32
1984	5	19	191	125	43	11	106	68	71	55
1985	3	7	96	65	35	10	100	67	85	65
1986	4	13	141	92	34	9	91	61	83	63
1987	5	19	179	116	36	10	105	71	87	65
1988	5	14	173	116	51	14	132	88	107	82
1989	6	12	223	153	39	23	161	108	87	50
1990	4	9	155	106	26	21	207	143	92	34
1991	4	8	145	100	26	20	196	134	89	32
1992	4	6	133	93	26	17	136	91	57	25
1993	2	4	87	60	16	14	138	95	61	22
1994	1	5	57	38	7	8	93	66	44	15
1995	2	11	95	61	6	8	94	67	51	19
1996	3	13	125	81	11	10	103	71	43	13

Table 5. Method of estimating underreporting (424\%) for the inriver commercial shad fishery in the Santee River SC based on the 1991 and 1992 data. The u is the annual inriver harvest for female shad based on inriver tagging (Appendix 10).

Year	Reported Landings \# ${ }^{1 /}$	u	Stock Size \# ${ }^{2 /}$
1991	13,280	0.13	440,250
1992	15,131	0.17	366,750
UNDERREPORTING			
1991	$433 \%=(0.13 / 0.030) * 100$		
1992	$415 \%=(0.17 / 0.041) * 100$		

1/ Commercial landings in numbers were estimated by dividing reported landings in lbs. by 3.5 lbs.

2/Santee River stock size was estimated by assuming that 40% of the annual run was passed each year into the Rediversion canal (Billy McCord pers. comm.).

Table 6. Input parameters for the Thompson-Bell Yield-Per-Recruit Model (YPR) for each shad stock to estimate F_{c}. Northern rivers include the Pawcatuck RI to Upper Chesapeake Bay MD. Southern rivers include the Edisto SC, Santee SC and Altamaha GA.

Input Parameter	Estimates	River system

Stock -Recruitment	See Table 2	
Maturation Schedule (female shad)	Ages 1-3 0.0	all rivers
	Age 40.20	all rivers
	Age 50.60	all rivers
	Ages 6+ 1.00	all rivers
Natural Mortality (M)	Ages 1-3 0.30	all rivers
	Ages 4-10 1.50	Northern rivers
	Ages 4-10 0.60	Hudson River
	Ages 4-8 2.50	Southern rivers
Partial Rec. Vector	Age 40.45	all rivers
	Age 50.90	all rivers
	Ages 6-10 1.00	all rivers
Growth Parameters (VB)	$\mathrm{K}=0.32$	all rivers
	$\mathrm{t}_{\mathrm{o}}=0.26$	all rivers
	$\mathrm{W}=10.0 \mathrm{lbs}$.	Northern rivers
	$\mathrm{W}=7.0 \mathrm{lbs}$.	Southern rivers
	$\mathrm{W}=13.0 \mathrm{lbs}$.	Hudson River

Table 7. Mean (1992-96) inriver fishing mortality rates $\left(\mathrm{F}_{\mathrm{r}}\right)$, mean (1992-96) coastal fishing mortality (F_{c}) and mean total (1992-96) fishing mortality ($\mathrm{F}_{\text {total }}$) (sexes combined) as compared to the overfishing definition $\left(\mathrm{F}_{\mathrm{c}}\right)$ for American shad from selected Atlantic coast rivers.

River	F_{r}	F_{c}	$\mathrm{F}_{\text {total }}$	F_{c}
Connecticut R.	0.13	0.09	0.22	0.43
Hudson R. ${ }^{1 /}$	0.17	0.16	0.33	0.39
Delaware R.	0.02	0.15	0.17	0.43
Upper Bay MD	0.01 0.21	0.11 0.24	0.12 0.45	$\begin{aligned} & 0.43 \\ & 0.48 \end{aligned}$
Santee R.	0.17	0.02	0.19	0.48
Altamaha R.	0.36	0.03	0.39	0.48

1/ 1995 population size (without coastal landings) $=526,000$ based on 1951 tag-recapture study in the Hudson R. (Talbot 1954).
2/ Current fishing mortality rate (F) for Edisto R. based on the 1994-97 F estimates (Table 10).

Table 8. Estimates of inriver $\left(\mathrm{F}_{\mathrm{r}}\right)$, coastal $\left(\mathrm{F}_{\mathrm{c}}\right)$ and total $\left(\mathrm{F}_{\mathrm{t}}\right)$ fishing mortality rates for shad (sexes combined) in the Edisto and Santee Rivers from 1989 to 1997 based on tagging (Appendix 10).

Year	Edisto			Santee		
	F_{r}	F_{c}	F_{t}	F_{r}	F_{c}	F_{t}

1989	0.67	0.34	1.01	-	-	-
1990	0.67	0.24	0.91	0.06	0.15	0.21
1991	-	-	-	0.14	0.06	0.20
1992	-	-	-	0.19	0.07	0.26
1993	-	-	-	0.11	0.06	0.17
1994	0.34	0.22	0.56	0.07	0.02	0.09
1995	0.21	0.28	0.49	0.12	0.01	0.13
1996	0.13	0.25	0.38	0.33	0.01	0.34
1997	0.16	0.19	$0.35{ }^{1 /}$	-	-	-

1/ Since commercial landings are not yet available in the Edisto for 1997 with which to estimate stock size, the 1997 coastal F estimates $\left(\mathrm{F}_{\mathrm{c}}\right)$ was estimated indirectly as a direct proportion based on the average contribution of F_{c} in 1994, 1995 and 1996.

Figure 1. Reported Inriver Commercial Shad Landings (LBS. *1000) from the Atlantic Coast, 1980-1996

Figure 2. Reported Coastal Commercial Shad Landings (LBS. *1000) from the Atlantic Coast, 1980-1996

Figure 3. Overall Average Juvenile Shad Abundance Indices for Four Rivers in the State of Maine, 1979-1995

Figure 4. State-Wide Coastal Commercial Landings (LBS. *1000) of American Shad for the State of Maine, 1979-1992

Figure 5. Relative Population Size (Mean Fish Lifted/Day) of American Shad in the Over the Essex Dam in the Merrimack R., 1983-1995

Figure 6. Population Size (LBS.) Entering the Pawcatuck River, 1974-1996

Figure 7. Juvenile Shad Indices of Abundance (Catch/Seine Haul) in the Pawcatuck River, 19771978 and from 1985-1996

Figure 8．Total Mortality Estimates（Z）for American Shad in the Pawcatuck River，from 1981－ 1992

：5－n												
1.51	＊＊＊＊＊											
	＊＊＊						＊＊＊＊					
	＊＊＊＊											
							＊＊					
3.	＊＊＊	－					＊					
		＊＊＊＊					＊					
；	＊＊＊＊＊＊＊＊＊	＊＊＊＊＊				棫楀	＊					
	Hecer	＊＊＊				0	相峨					
i．${ }^{\text {＋}}$	TEFT0，	＊＊＊＊1					－1．at					
	＊＊	＊＊＊＊	7＊FFK			－	\％	cextay				
		＊＊＊＊＊	＊＊＊＊＊			＋		＊				
	$\stackrel{*}{* * m a t}$	＊＊＊＊＊	＊＊＊＊＊＊				四相	2tick				
2	＊＊＊＊＊	＊＊＊＊	＊＊＊＊			效域	为如					
	57：	＊＊＊＊＊	为			＊	－	＋4．0＊	＊			
	＊＊＊	＊＊ETE	xxtis			Eatater	Otict	－	4－489			
	＊＊＊		87\％17\％			＋10＋19			5			
1.5.	4ixim	＊$*+*$＊	（3）＊＊		＊＊＊＊	Wext		＋	＊＊			
	－	＊＊＊TK	crats		＊	4，		0				
	－	＊＊＊＊	204t	戒事䄈	－	＋	－${ }^{\text {a }}$	4＊	Fixic			
	＋xix	＊＊＊	＊	－+	＊＊＊	＊	atat		1．4．4＊			27x｜c｜in
$1+$	－		recma	4nat		＊＊＊		Su－x	20xt	＊＊＊＊＊		＊＊＊＊
	＊	＊＊＊	vetw						Hrax	＊＊＊＊		＊＊＊＊부ํ
		＊$*$ 本相	＊	＊＊＊		－	Hint	－	＊＊＊	＊＊＊＊		＊＊＊＊
	＋			－	本本新			杜为	＊	\％	＊＊森	＊＊＊＊＊
05%	4－8	－	${ }^{+1}$	－					－	＊－14＊＊	＊204＊	＊＊＊＊＊
	－1＊＊＊	＊＊＊＊	$\xrightarrow{*}$	＋att	＊			0		为	（1）	
		3家樢	\％		＊	－		10x＋	－	comb	＊＊＊＊＊	
								189	1889	1890	1991	1982
	1381	1382	1983	1954	1865	1508	¢\％7					

Figure 9. Population Size in Numbers ($\mathrm{N} * 1000$) of Connecticut River Shad, 1980-1997

Figure 10. Fishing Mortality Rates from Commercial and Recreational Fishing on Connecticut River Shad, 1966-1996

Figure 11. Fishing Mortality Rates (F) from the Coastal Commercial Fishery on Connecticut River

Figure 12. Total Fishing Mortality Rate from Commercial and Sport Fishing on Connecticut River Shad, 1980-1996

Figure 13. Recruitment Based on Scaled Juvenile Indices for Connecticut River Shad, 1966-1996

Figure 14. Population Size in Numbers of Hudson River Shad, 1980-1996, based on q estimate from Talbot, 1954

Figure 15. Commercial Shad Landings within the Hudson River, 1980-1996

Figure 16. Fishing Mortality Rates from Inriver Commercial Fisheries on Hudson River Shad, 1980-1996, based on q estimate from Talbot, 1954

Figure 17. Fishing Mortality Rates from Coastal Commercial Fisheries on Hudson River Shad, 1980-1996, based on q estimate from Talbot, 1954

Figure 18. Total Fishing Mortality Rates on Hudson River Shad, 1980-1996, Based on q Estimate

from Talbot, 1954

Figure 19. Population Size in Numbers of Hudson River Shad, 1980-1996, Based on q Estimate from Hattala, 1997

Figure 20. Fishing Mortality Rates from Inriver Commercial Fisheries on Hudson River Shad, 1980-1996, based on q estimate from Hattala, 1997

Figure 21. Fishing Mortality Rates from Coastal Commercial Fisheries on Hudson River Shad, 1980-1996, based on q estimate from Hattala, 1997

Figure 22. Total Fishing Mortality Rates from Coastal and Inriver Commercial Fisheries on Hudson River Shad, 1980-1996, based on q estimate from Hattala, 1997

Figure 23. Postlarval Index of Recruitment (Catch/Tow) in the Hudson River, 1974-1994

Figure 24. Population in Numbers for Delaware River Shad, 1980-1996

Figure 25. Recruitment Based on Scaled Juvenile Indices for Delaware River Shad, 1980-1996

Figure 26. Inriver Fishing Mortality Rates (F) on Delaware River Shad, 1980-1996

Figure 27．Coastal Fishing Mortality Rates（F）on Delaware River Shad，1980－1996

Ficz Sum																	
$0.3=$				K30,													
				\Rightarrow													
				349407													
3.25 ＋																	
				72070\％													
	由車㜛年		＊＊＊＊풒														
	＊＊＊＊＊		＊＊＊＊＊			＊					＊如稱						
$0.2 \pm$	－		＊＊＊＊＊	＊＊＊＊＊＊	＊＊＊＊＊＊							7490品					
				xnatic		xaris											
			紋为事	xumina							東本夷㭏	abatat					
	－9\％Mve		＊＊＊ $\boldsymbol{*} \boldsymbol{*}$＊	＊＊＊＊＊	＊＊＊＊＊	＊$⿻$ ¢897			＊＊＊＊＊	＊＊＊＊		\＃409\％				Praper	
915＋	77878		校彻	＊＊＊＊＊	＊＊＊大桃						Prar	7 $7+1 \times 8$		Frowich		Anviar	
				車車年宜								atatat					
	中梀束＊			＊＊＊＊＊	＊＊＊	嵒禹	或地			＊＊＊＊		axpapt	－3xatit			＊＊＊＊＊＊＊	
	$7 \times+7$		\＃	＊＊＊＊ex	－		$4 * * * d x$	＊＊＊	－		＊－70－	［7ㅁํํ	0×1	120407		부ํㅜㅜํ	
			Hedrat			ㅍ․․․	즈ำ．	\ldots					轌．	蚛＊	mat $* *$	－\Rightarrow	＊＊＊＊
	＊＊＊＊＊	＊＊＊＊＊	Ap＋3．4	＊407x			atatat	为車相	虹祖事			＊＊＊＊＊	H $\Rightarrow * * *$	＊＊＊＊＊			＊
0.17	$\underline{\square}+{ }^{+1}$		－\rightarrow－	＊＊＊＊＊＊	＊－10＊	P					＊＊＊		車为車交		－19＋7	ب7ay	
	aramel						9F－7										
		＊＊＊＊＊		＊＊＊＊＊					早平社			艮	＊＊＊＊		＊＊＊＊＊＊	＊＊＊＊	
		주N:	丰	*부ㅎㅜㅜ			＊＊＊－	事車車事表							machat		
0.05	－	tatat	－＝anime	Faxter	里						國为	mentr		atetert	Hatet	＋10	
	\％omentw		＊＊＊＊	＊＊＊＊＊	${ }^{+\rightarrow+1}$					本乘戠		1979＋9	＊			－	athert
	－	＊＊＊＊＊	＊	＊＊＊＊＊＊	＊＊＊asp			crextal			二ay＊		＊＊＊＊＊＊	＊＊＊＊＊	＊＊＊＊	＊＊＊＊＊	＊＊＊ํx
	－	＊＊＊＊＊＊									平	*****来	*****数				
	1980	1981	1987	1583	1504	1280	1385	18.87	IPOD	［603	1980	5 \％91	1982	It3s	1934	4045	1996

Figure 28. Total Fishing Mortality Rates (F) on Delaware River Shad, 1980-1996

Figure 29. Total Stock Size of American Shad from the Upper Bay, 1980-1996

Figure 30. American Shad Natural Population Size to the Upper Bay, 1980-1996

Figure 31. Juvenile Shad Relative Abundance from the Upper Bay, 1980-1995

Figure 32. Coastal Fishing Mortality (F) Rates on American Shad from the Upper Chesapeake Bay, 1980-1996

Figure 33. Natural Mortality Rates (M) on American Shad from Maryland Waters, 1980-1996

Figure 34. Rappahannock River Commercial Catch-Per-Effort for Female American Shad, 19801993

Figure 35. York River Commercial Catch-Per-Effort for Female American Shad, 1980-1993

Figure 36. James River Commercial Catch-Per-Effort for Female American Shad, 1980-1993

Figure 37. Relative Exploitation Rate on Rappahannock River Female Shad from the Coastal Commercial Fishery, 1980-1993

Figure 38. Relative Exploitation Rate on York River Female Shad from the Coastal Commercial Fishery, 1980-1993

Figure 39. Relative Exploitation on James River Female Shad from the Coastal Commercial Fishery, 1980-1993

Figure 40. Estimated Coastal Commercial Shad Landings (LBS.) from Virginia Rivers, 19801995

Figure 41. Juvenile Shad Abundance (Maximal CPE) from the Mattaponi River, 1979-1987 and from 1991-1996

Figure 42. Juvenile Shad Abundance (Maximal CPE) from the Pamunkey River, 1979-1987 and from 1991-1996

Figure 43. North Carolina Commercial Shad Landings (LBS. *1000) from Albemarle Sound, 1980-1996

Figure 44. Estimated Coastal Commercial Shad Landings (N * 1000) from North Carolina Rivers, 1980-1996

Figure 45. Total Mortality Rates (Z) for American Shad from Albemarle Sound, North Carolina, 1980-1993

Figure 46. North Carolina Commercial Landings (LBS. *1000) of American Shad from the Pamlico River, 1980-1996

Figure 47. North Carolina Commercial Landings (LBS. *1000) of American Shad from the Neuse River, 1980-1996

Figure 48. North Carolina Commercial Shad Landings (LBS. *1000) from Cape Fear River, 19801996

Figure 49. Inriver Commercial Landings (LBS *1000) Adjusted for Underreporting of American Shad in the Waccamaw-Pee Dee River, 1980-1996

Figure 50. Inriver Commercial Landings (LBS. *1000) Adjusted for Underreporting of American Shad in the Edisto River, 1980-1996

Figure 51. Inriver Commercial Landings (LBS. *1000) Adjusted for Underreporting of American Shad in the Savannah River, 1980-1996

Figure 52. Inriver Commercial Landings (LBS. *1000) Adjusted for Underreporting of American Shad in the Santee River, 1990-1996

Figure 53. Stock Size (N * 1000) of American Shad in the Santee River, 1990-1996

Figure 54. Population Size (River+Coastal Landings) of American Shad in the Edisto River, 1989-1990 and 1994-1996

Figure 55. Population in Numbers for Altamaha River Shad, 1982-1996

Figure 56. Adjusted Inriver Commercial Landings (LBS. *1000) of Altamaha River Shad, 19821996

Figure 57. Adjusted Coastal Commercial Landings (\#* 1000) of Altamaha River Shad, 1982-1996

Figure 58. Inriver Fishing Mortality Rates (F) on Altamaha River Shad, 1982-1996

Figure 59. Coastal Fishing Mortality Rates (F) on Altamaha River Shad, 1982-1996

Figure 60. Recruitment to the Altamaha River Shad Stock, 1982-1991

Appendix 1
Table 1. Shad Juvenile Indices and Coastal Commercial Landings (LBS. *1000 for Maine, 1979-95

OBS	YEAR	JUV	LANDINGS
1	1979	0.25	18.5
2	1980	0.83	28.0
3	1981	3.43	90.6
4	1982	0.64	25.9
5	1983	0.11	38.8
6	1984	3.26	33.4
7	1985	0.37	16.1
8	1986	1.92	23.0
9	1987	0.41	26.7
10	1988	0.66	31.7
11	1989	3.56	46.1
12	1990	0.61	11.8
13	1991	1.14	2.0
14	1992	0.98	1.5
15	1993	0.37	0.6
16	1994	0.60	1.1
17	1995		0.4

Appendix 1
Table 2. Average number of juvenile shad caught per standard seine haul by river section for the years 1979-1996 (no sample taken above Chops Point is included in this summary)

River Sextion	1979	1980	1981	1982	1993	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Upper Rennebec	0.16	0.00	1.08	0.00	0.15	0.90	- 0.69	0.10	0.15	0.11	1.25	3.50	1.21	0.10	0.00	0.00	0.21
Andrascoggin	0.00	0.29	0.29	0.17.	2.18	0.00	0.40	0.08	017	0.00	1.29	0.83	0.00	0.67	363	1.00	1.89
MeryHeeting Bay	0.00	0.36	0.85	0.33	0.20	0.46	1.53	0.15	8.05	1.36	0.29	2.46	0.00	0.67	029	0.35	0.39
Eastern	0.00	0.00	0.00	0.00	0.00	0.67	7.00	0.50	0.00	0.5]	0:00	4.20	1.17	400		0.50	0.33
Cathance	0.00	0.00	0.50	0.00	3.00	2.00	6.50	1.00	. 1.25	0.00	0.48	6.83	067	3.67	0.00	0.00	0.17
Abegsdasset										0.50	0.33	0.00	0.33	1.67	0.00	0.00	0.17
Mid Xennebec	0.00	0.00	0.17	063	000												
Lower Kensebec	0.00	0.00	0.00	000													

'The size of the seire and method of seising was chenged in 1983. For details, see METHODS (AFC-26-3)

Appendix 2
Method of estimating shad relative stock abundance and recruitment for the Merrimack River stock using Essex Dam lift data, 1983 to 1995

Year	Total Shad Lifted	\# Days ${ }^{1 /}$	Shad/Day	Recruitment ${ }^{2 /}$

1983	5,612	54	103.9	255.8
1984	4,602	42	109.6	170.6
1985	12,294	54	227.7	140.7
1986	17,777	54	329.2	244.5
1987	16,441	54	304.5	345.9
1988	12,219	54	226.3	223.4
1989	7,513	54	139.1	129.7
1990	5,709	54	105.7	222.9
1991	13,462	54	249.3	-
1992	20,415	54	378.1	-
1993	8,562	54	158.6	-
1994	4,341	54	80.4	-
1995	13,790	54	255.4	-

1/ Days lifted from May 15 to July 7 (54 days).
2/ Recruitment $_{t}=0.28 *$ Pop $_{\mathrm{t}+4}+0.68 *$ Pop $_{\mathrm{t}+5}+0.12 *$ Pop $_{\mathrm{t}+6}$ where: $\operatorname{Pop}_{t+4}=$ the relative population size in year $t+4$;
$0.28,0.68$ and $0.12=$ the average contribution of age 4,5 and 6 year old female shad to the Connecticut River stock.

Appendix 3
Table 1. Population estimates (numbers) of American shad in the Pawcatuck River RI, juvenile shad indices (JI) of abundance (arithmetic mean/seine haul), adult recruitment (numbers) to the adult stock and instantaneous total mortality (Z) rates from 1974 to 1996.

Year	$\begin{gathered} \text { Population size }{ }^{1 /} \\ \# \end{gathered}$	JI	$\begin{aligned} & \text { Recruitment }^{2 /} \\ & \quad \# \end{aligned}$	Z

1974	0	-	0	-
1975	19	-	24	-
1976	175	-	214	-
1977	14	8.4	181	-
1978	114	5.3	140	-
1979	255	-	312	-
1980	315	-	386	-
1981	266	-	326	3.62
1982	178	-	219	3.13
1983	228	-	280	2.39
1984	1265	-	591	1.24
1985	4219	17.7	920	1.54
1986	3031	1.8	545	2.74
1987	724	0.1	30	3.30
1988	580	1.3	394	2.34
1989	533	0.1	30	2.00
1990	904	0.3	91	0.86
1991	1900	2.3	697	0.53
1992	2119	7.6	2303	1.06
1993	797	14.4	4363	-
1994	270	8.3	2514	-
1995	739	2.1	636	-
1996	1508	0.6	181	-

1/ Estimates of stock size in numbers from 1974 to 1983 were based on the population size in lbs. from Gibson and Crecco (1988, Appendix 1, pages A-1, A-2) divided by 4.5 lbs . The population estimates from 1984 to 1996 were reported by Powell (1995).

2/ Estimates of recruitment in numbers from 1974 to 1983 were taken from Gibson and Crecco (1988, Appendix 1, pages A-1, A-2), whereas recruitment from 1984 to 1996 were derived as the juvenile index scaled to the recruitment estimates from 1985 to 1995.

Appendix 3

Table 2. Adult Shad Recruitment (Rec), Adult Shad Population Size (LBS. *1000), Juvenile Abundance (JUV) Total Mortality (Z) In the P 1

OBS	YEAR	REC	POP	JUV	Z	RICST
1	1974	0	0			
2	1975	24	87	.		
3	1976	214	786			
4	1977	181	663	8.42		
5	1978	140	513	5.30		
6	1979	312	1146	.	.	
7	1980	386	1416	.		2.0
8	1981	326	1198	.	3.60	31.4
9	1982	219	803	.	3.10	79.3
10	1983	280	1026		2.40	23.5
11	1984		5693		1.20	36.6
12	1985		18986	17.72	1.50	90.8
13	1986	545	13640	1.80	2.70	52.4
14	1987	30	3258	0.08	3.30	103.9
15	1988	394	2610	1.32	2.30	122.0
16	1989	30	2999	0.07	2.00	42.0
17	1990	91	4068	0.25	0.90	22.8
18	1991	697	8550	2.27	0.53	27.8
19	1992	2303	9536	7.63	1.10	13.3
20	1993	4363	3587	14.36	.	40.6
21	1994	2514	1215	8.30		17.9
22	1995	636	3325	2.10		28.0
23	1996	181	7540	0.60		0.0

Appendix 4

Table 1. Population estimates (numbers) of adult Connecticut River shad (SPOP) from 1966 to 1997, adult (REC) shad recruitment to the adult stock adjusted for May-June river flow from 1966 to 1982 (Lorda and Crecco 1987), and indices (SJI) of juvenile shad abundance (arithmetic mean catch/tow or haul) from 1966 to 1996.

Year	$\begin{gathered} \text { SPOP } \\ \# \end{gathered}$	$\begin{gathered} \text { REC } \\ \# \end{gathered}$	SJI catch/haul

1966	621,300	257,400	32.8
1967	742,300	243,700	20.2
1968	945,800	200,000	11.1
1969	1,108,180	228,500	19.0
1970	1,140,500	181,900	27.8
1971	1,128,600	290,600	65.7
1972	390,900	378,100	15.3
1973	353,700	219,800	12.7
1974	952,500	273,500	21.4
1975	847,500	263,600	23.7
1976	936,900	240,000	22.4
1977	361,900	414,200	57.5
1978	560,700	449,100	18.6
1979	557,000	494,700	47.9
1980	685,000	369,600	21.3
1981	909,300	302,600	12.5
1982	939,300	267,300	4.8
1983	1,574,500	.	16.6
1984	1,231,100	.	11.2
1985	727,600	.	15.9
1986	748,400	.	17.0
1987	587,500	.	44.3
1988	647,600	.	24.0
1989	979,400	.	61.6
1990	816,400	.	43.0
1991	1,195,900		49.4
1992	1,628,100		97.4
1993	749,200		79.6
1994	325,600		107.9
1995	304,500	.	28.8

Appendix 4

Table 2. American shad population estimates (numbers), Connecticut River adjusted commercial (CT Comm) and recreational landings (CT Sport) landings in numbers, commercial fishing effort (gillnet days) and combined inriver annual harvest rates (u) and instantaneous fishing rates (F) on Connecticut River shad from 1980-1997.

Year	Population Size \#	CT Comm Landings \#	CT Comm Effort (days)	CT Sport Landings \#	River $\mathrm{u}^{2 /}$	$\mathrm{F}^{3 /}$

1980	685,000	88,329	897	12,189	0.15	0.16
1981	909,300	97,684	907	68,771	0.18	0.20
1982	939,300	81,132	790	44,058	0.13	0.14
1983	1,574,500	99,328	840	99,372	0.13	0.14
1984	1,231,100	88,579	575	71,305	0.13	0.14
1985	727,600	89,303	575	41,160	0.18	0.20
1986	748,400	117,770	590	102,225	0.29	0.34
1987	587,500	64,732	525	92,619	0.27	0.31
1988	647,600	77,179	351	52,906	0.20	0.22
1989	979,400	72,996	450	60,059	0.14	0.15
1990	816,400	57,642	400	37,831	0.12	0.13
1991	1,195,900	70,479	500	84,706	0.13	0.14
1992	1,628,100	50,039	410	89,323	0.09	0.10
1993	749,200	32,358	400	64,855	0.13	0.14
1994	325,600	38,989	350	45,014	0.26	0.30
1995	304,500	26,045	368	14,425	0.13	0.14
1996	667,000	29,233	352	25,678	0.08	0.09
1997	725,000					

${ }^{1 /}$ Landings data have been reported in pounds, assumed average weight $=5.0 \mathrm{lbs}$. for converting weight to numbers.
${ }^{2 /} \mathrm{u}=$ (commercial+recreational catch)/ population size.
${ }^{3 /} \mathrm{F}=-\log (1-\mathrm{u})$.

Appendix 5
Table 1. Coastal Landings (LBS. *1000), Inriver Landings (LBS. *1000), Population Size (N *1000), Inriver Fishing Mortality, Coast 3

Appendix 5
Table 2. Coastal Landings (LBS. *1000), Inriver Landings (LBS. *1000), Population Size (N *1000), Inriver Fishing Mortality, Coast 1

Oes	YEAR	ACSTW	Catchi	POPN:	FR	FC	FTOTAL
1	1980	163.2	2626	3263.01	0.18564	0.01047	0.19611
2	1981	249.6	1240	1690.30	0.17160	0.03125	0.20285
3	1982	441.6	758	920.81	0.21138	0.10526	0.31664
4	1983	302.4	918	1060.16	0.21294	0.06126	0.27420
5	1984	316.8	1402	1179.60	0.30420	0.05758	0.35178
6	1985	321.6	1512	1504.95	0.24726	0.04554	0.29280
7	1986	292.8	1698	2226.56	0.16692	0.02778	0.19470
8	1987	340.8	1368	2258.07	0.13562	0.03195	0.17157
9	1988	422.4	1566	2468.20	0.14742	0.03630	0.18372
10	1989	518.4	972	1653.93	0.14040	0.05753	0.20793
11	1990	686.4	928	1310.96	0.18096	0.11550	0.29646
12	1991	643.2	658	1252.74	0.12948	0,11218	0.24165
13	1992	436.8	532	998.48	0.13026	0.09556	0.22582
14	1993	456.0	276	619.05	0.11622	0.15650	0.28282
15	1994	316.8	316	620.61	0.12636	0.11244	0.23880
16	1995	321.6	382	801.63	0.11466	0.08728	0.20194
17	1996	340.8	242	536.40	0.11466	0.14119	0.25564

Appendix 5
Table 3. Coastal Landings (LBS. *1000), Inriver Landings (LBS. *1000), Population Size (N *1000), Inriver Fishing Mortality, Coast 3

Appendix 5
Table 4. Explanation and definition of Hudson River shad data from 1931 to 1994 used in the assessment. See Appendix Table A1 for associated Hudson River shad data.

Parameter	Years	Definition Source

Catch	1931-94	Reported Comm. Catch (lbs.*1000)- Kathy Hattala
F_{t}	1931-94	Licensed ft. of gill net - see Methods Section
E2	1937-94	Not used in analysis
Time	1931-94	Days open to Comm. Fishery- see Methods section
Larv	1974-94	Utilities Postlarval shad index- K. Hattala
Q	1974-94	Comm. Catchability Coefficient- see Methods
Catch2	1931-94	Comm. adjusted for 50\% underreporting- assumed
Effort	1931-94	Fishing effort ($\mathrm{F}_{\mathrm{t}}{ }^{*}$ time)- see Methods
Uint	1931-94	Annual fishing rate- see Methods
Popw	1931-94	Hudson Population size (lbs.*1000)- see Methods
Popn	1931-94	Hudson Population \# -assumed av. weight=5.0 lbs
CN	1931-94	Adjusted Comm. Catch \#- assumed av. weight
F	1931-94	Instantaneous Fishing Rate- see Methods
Escape	1931-94	Spawning Stock-Popw -Catch2- see Methods
Rec	1974-94	Adult Recruitment based on Larv- see Methods
CPE	1931-94	Catch Per Unit Effort - see Methods
CE	1937-94	Not used in analysis

Appendix 5

Table 5. Comparison between the relative magnitude of the Hudson River shad stock size (lbs. * 1000) and the Connecticut River shad stocks from 1940 through 1951 based on the studies of Talbot (1954) for the Hudson River and Fredin (1954) for the Connecticut River. The average population estimates were used to scale (scalar $=2.93$) the Hudson River stock size to that of the Connecticut River.

Year	Hudson River	Connecticut River

	lbs * 1000	
1940	4,521	1,247
1941	4,552	1,665
1942	4,634	1,517
1943	4,484	1,602
1944	5,473	1,701
1945	5,480	1,391
1946	4,167	1,647
1947	2,588	1,215
1948	3,225	1,085
1949	2,741	842
1950	1,398	590
1951	1,639	801
Mean	3,742	1,275
SE	402	109
Scalar	2.93	

Appendix 6
Table 1. Explanation and definition of Delaware River shad data from 1960 to 1995 used in the assessment. See Appendix Table A2 for associated Delaware River shad data.

Parameter	Years	Definition Source
Catch	1960-95	Reported Comm. lbs.*1000- see Methods Section
CPE	1960-95	Shad Catch/ Effort from Lewis- Russ Allen
POP	1975-95	Population Size ($\mathrm{N}^{*} 1000$)- Art Lupine
JUV	1980-95	Shad Juvenile Indices- Art Lupine
ADC	1960-95	Adjusted Landings for underreporting and Rec.
ST	1960-95	Estimated Stock Size-N* 1000- See Methods
CN	1960-95	Adjusted Comm. Catch \#- av. weight 4.5 lbs .
Stock	1960-95	Total Stock Size-\#*1000- see Methods
U	1960-95	Annual Fishing Mortality- see Methods
F	1960-95	Instantaneous Fishing Rate- see Methods
Popw	1960-95	Population size (lbs.*1000)- see Methods
SSBW	1960-95	Spawning Biomass- (Popw - ADC) - see Methods
REC	1980-95	Adult Recruitment from Juvenile- see Methods
REC2	1981-95	Not used in Assessment
CPUE	1960-95	Comm. Catch Per Effort - see Methods

Appendix 6
Table 2. New Jersey Commercial Landings American Shad 1952-1995 (In Pounds)

Year	Budson Estuary	Coastal	Delaware Estuary	Other Unkinown	Total
1952	589,500	375,5601	105,000	337.241	1,402,3001
1953	473,722.	NA	67,000	[38,078	678,800
1954	664,706	102,808	28,000	30,086	825,600
1959	1,006,6441	298.500;	14,000	7,356	1,326,500
1956.	1,101,4321	221,400	38,000	0	1,360,832
1957	1,029,475	234,291	43,000	0	1,306,766
1958	612,302	357,3931	92,000	2,117	1,043,812
1959	678,744	340,171	37,000	0	1,075,915
1960	449,700.	215,400	108,000	7.500	780,600
1961	352,344	102.405	174,000	3,7511	632,700
1962	309,531	48,852	72,000	49,2171	479,600
1963	215,454	78,842	99,000:	48,704	442,000
1964	103,781,	77,939	190,006	58,280	430,000
1965	117,563	26,464	227,000	21,473	392,500
1906	48,424	52,521,	172,000	0	272,945
1967	99,867	21,893	118,000	7,938	247,700
1968	141,272	46,249	48,000	5,079	240,600
19699	120,428	56,4131	5,000	5,559	187,5001
1970	135,671	35,394	16,000	8,335,	195,400
1971	100,760	17,088	8,400	14,552	140,800
1972	119,473	23,974	26,200	93,453	263,100
1973	98,248	19,688	21,700	3,164	142,800
1974	51.500	33,173	19,244	17,583	121,500
1975	37,0971	49,339	35,898	- 0	122,334
1976	29, 2122	30,075	51,503	0	110,700
1977	63,754	92,269	41,863	0	197,886
1978	110,905	59,281	71,826	0.	242,012
1979	59,812.	64,640	24,436	0	148,888
19801	161,6501	68,456	NA	50,6421	280,7481
1981	160,570]	67,134;	NA	95,537	263,261
1982	48,933	115,295	N入	185,700	349,928
1983	72,162	132,300	68,700	0	273,162
1984	76,775	143,200	73,045	0	293,020
1985	53,400	166,100	72,200	01	291,700
1986	118,998	92,284	82,4317	41,522	335,234
1987	31,8231	75,059	129508	31,373	267,763
1988	711,700	114,013	136,743	72, 1082	434,540
1989	63,695	225,5781	190,383	45,280	524,938
1990	57,419	227,596:	262,064	64,566	611,645
1991	29,060	127,967	279,478	17,463	453,968
1992	28,570	[25,323)	202,051	10,884	366,828
1993	8,500	152,161	187,483	14,193	362,437
1994	NA	NA	NA	261,619	261,619
1995	1,204	162353	126, 76	0.	292953
19\%\%		121,091	48.874		169,95

Appendix 6

Table 3. Inriver Landings (LBS. * 1000), Coastal Landings, Stock Size, Inriver F, Coastal F, Total F and Recruitment to the Delaw 1

OBS	YEAR	ADC	CSTW	STOCK2	FR2	FC2	FTOTAL2	REC
1	1980	4.8	202.5	228.07	0.005844	0.21979	0.22563	237.5
2	1981	10.0	324.0	620.22	0.004062	0.12340	0.12746	326.8
3	1982	19.8	580.5	642.40	0.008607	0.22416	0.23276	290.7
4	1983	20.4	405.0	344.53	0.017971	0.30276	0.32073	644.1
5	1984	26.0	477.0	534.78	0.013567	0.22091	0.23448	473.1
6	1985	46.2	450.0	533.27	0.023981	0.20767	0.23165	364.8
7	1986	92.6	409.5	706.58	0.034000	0.13787	0.17187	385.7
8	1987	61.2	472.5	832.60	0.018868	0.13480	0.15367	414.2
9	1988	83.4	594.0	864.53	0.025626	0.16568	0.19131	364.8
10	1989	58.0	724.5	1005.89	0.015373	0.17442	0.18979	378.1
11	1990	112.4	931.5	1089.98	0.028696	0.21061	0.23931	689.7
12	1991	69.6	882.0	1069.47	0.017866	0.20245	0.22031	391.4
13	1992	102.0	612.0	1041.67	0.025346	0.13991	0.16525	218.5
14	1993	65.2	621.0	849.49	0.020574	0.17728	0.19785	642.2
15	1994	46.8	418.5	800.40	0.014811	0.12352	0.13833	366.7
16	1995	52.2	423.0	615.60	0.022490	0.16570	0.18819	431.3
17	1996	22.2	463.5	899.93	0.006210	0.12155	0.12776	868.3

Appendix 7
Table 1. Population Size (N * 1000), Bay Juvenile Index, Coastal Landings (\# * 1000), Total Stock, Inbay F, Coastal F, Total F, Nat 1

OBS	YEAR	PQP	REC	COASTC	STOCK	FB	FC	Fi	NATNE	ARTIF
1	1880	55	0.19 \|	3	14.838	076652	0.22589	0.99241	8.606	6,232
2	1981	9.4	0.00	6	15.411	0.001201	0.49319	0.49439	8.939	6.473
3	1982	37.6	0.01	9.	47,350	0.01975	0.21089	0.23056	27.463	19.887
4	1983	12.1	0.00	7	20.450	0.10577	0.419001	0.52478	11.881	8.589
5	1984	8.1	0.089	11	20.562	0.165995	$0.76562]$	0.98160	11.926	8.636
6	1985	143	0.05	10.	24.487	0.073031	0.524881	0.53790	14.203	10.285
7	1568	22.9	0.02	9	33,213	0.05573	0.316061	0.37179	19.263	13.949
8	1987	27.4	0.15	10	38.975	0.05568	0.20649	0.35238	22605	66370
9	1988	42.7	0.06	14	59.775	0.00854	0.26689	0.33639	34.670	25.106
10	1989	75.81	0.42	23	101.539	0.03546	0.25685	0.29239	56.892	42.546
11	1990	123.8	0.02	21.	153.500]	0.06792	0.14712	0.21503	89.030	64.470
12	1991	139.8	0.12	20	159.975	0.00054	0.13355	0.13409	94.385	65.590
13	1992	105.3	0.03	17	126.200:	0.03637	0.14469	0.19105	68,148	58.052
14	1993	47.6	0.19	14	61.600	0.00000	0.25783	0.25783	32.0032	29.568
15	1994	129.5	0.27	8	137.500	0.00000	0.05994	0.05984	60.500	77.000
16	1995	333.9	0.70	8	341.900	0.00000	0.02968	0.02388	143.598	198.302
17	1996	203.2		10.	213.200	0.000001	0.04804	0.04604	148.240	63.960

Appendix 7

Table 2. Stock origin (\% wild and hatchery origin fish) of adult shad returning to the Conowingo Dam and the Upper Bay stock, 1989-96 Data from Dick St. Pierre (USFWS) and Carol Markham (MD DNR).

Appendix 7

Table 3.

MEMO TO: Vic Crecco
Chairman, ASMFC Shad Stock Assessment Committee
FROM: Dale Weinrich and Carol Markham
Maryland Department of Natural Resources
SUBJECT: Comments Concerning Draft Stock Assessment of American Shad From Selected Atlantic Coast Rivers

1. In Table 1, page 31, Maryland and Virginia intercept landings are distinct from on another and should be analyzed separately. Table 1 should read as follows:

YEAR	MARYLAND	
1980		
1981		95,914
1982		275,679
1983		276,095
1984	15,085	207,707
1985	126,030	64,338
1986	119,304	332,157
1987	264,642	355,588
1988	487,812	395,227
1989	283,649	426,838
1990	233,993	399,761
1991	198,833	325,176
1992	77,885	399,634
1993	33,644	432,193
1994	44,931	490,154
1995	94,97	230,106
1996		148,000

2. Table 2, page 32, also continues this same type of error by lumping Maryland and Virginia tag data into a single unit. Since only 1 of 58 (2\%) tags recovered by Jesien in 1991 and 1992 came from the Upper Bay, the 38% figure listed in incorrect. You must separate tagging and recovery locations (Ocean City vs. Rudee Inlet, VA Bay vs. MD Bay) in order to accurately estimate these percentages. In addition, the 38\% figure used in Table 2 assumes that the 10 (19\%) tagged fish recovered in the VA ocean were destined for Chesapeake Bay. This assumption is highly tenuous and further inflates the percentage contribution estimates. This lumping seems even more erroneous because the Upper Bay and Virginia rivers were analyzed separately.
3. Tables 3 and 4, pages 34 and 35 , should again be broken out and not lumped together as BAY. Were these numbers adjusted by taking the values from Table 1, adding 50% for underreporting, and multiplying by 38% ?
4. The Z values referred to on page 13 and presented in Appendix 7 are incorrect. Appendix 7
should read as follows:

YEAR	POPULATION SIZE	REPEAT SPAWNERS (Sexes combined)		$\underline{\text { Z }}$
1984	8,074	0.4	32	
1985	14,283	9.1	1300	1.83
1986	22,902	2.4	550	3.26
1987	27,345	6.9	1887	2.50
1988	42,683	4.8	2049	2.59
1989	75,820	4.7	3564	2.48
1990	123,830	4.9	6068	2.52
1991	139,862	14.8	20700	1.79
1992	105,255	11.4	11999	2.46
1993	47,563	17.0	8086	2.57
1994	129,492	10.4	13466	1.26
1995	333,891	7.1	23706	1.70
1996	203,216	13.6	27637	2.49

It is interesting to note that total instantaneous mortality using a cohort-specific CPUE-at-age catch curve for the years 1985 through 1989 estimated Z at $0.59,0.92,0.71,0.62$, and 1.30 , respectively.
5. A reference is made on page 13 to Maryland Bay commercial landings, fishing effort date, (drift, anchor, and stake gillnets licensed) and CPE having been collected from 1990 to 1995. The problem with this is that I do not see this information in appendix 7 and even if I did I would view it as suspect since we have had a moratorium on shad fishing in the Maryland Bay since 1980.
6. The 38% figure used to determine the relative contribution of Bay shad to the VA-MD intercept fishery is, again, highly erroneous since the two must be separate. A second flaw in this exercise concerns the assumption that the upper Bay stock comprised 50% of the total Bay stock. What is meant by the upper Bay; Susquehanna River only? Susquehanna River/Flats? Analysis of total Bay shad landings, MD and VA combined vs Maryland mainstream Bay plus Susquehanna River, Flats, and Northeast River from 1962 through 1990 indicate that only 16.2% of the reported landings came from the "Upper Bay". Finally, total Maryland shad landings as a percentage of total Bay landings (MD + VA) from 1929 through 1980 averaged 26.8\%.
7. The following discussion concerns the table in Appendix 7.

POTJUV: Why was this index used instead of the Bay-wide or the Upper Bay juvenile index? What relevance does the Potomac have with the Upper Bay?

YEAR	BAYWIDE INDICES
1980	0.19
1981	0.00
1982	0.01
1983	0.00
1984	0.08
1985	0.05
1986	0.02

1987	0.15
1988	0.06
1989	0.42
1990	0.02
1991	0.12
1992	0.03
1993	0.19
1994	0.27
1995	0.70

REC: Does recruitment refer to juveniles or spawning adults, and how was it calculated?

CST: What commercial landings totals were used to derive this column; MD, VA, or MD + VA? Also, shouldn't this column equal the adjusted commercial landings found in Table 4?

FB: How can these estimates be made if a shad moratorium has existed in Maryland's Chesapeake Bay since 1980? Does FB include Virginia data? What about the mortality associated with the Conowingo fish lifts; is it included under F or under M? It needs to be included somewhere since every adult transported upstream above the dams does not leave the system alive.

We could not duplicate the results in this table (Appendix 7). Better explanations with actual procedures and calculations would be appreciated.
8. In Table 5, page 36, the M values assigned to the upper Bay seem extraordinarily high. We have been utilizing the ICES $95^{\text {th }}$ percentile formulation procedure of $3 / \mathrm{T}_{\max }$ to estimate natural mortality and since our max age is $7, \mathrm{M}$ would equal 0.43 . Also in Table 5 , we see total maturation by age 7 , not age 6 .
9. How were the numbers used in Figure 23 derived?
10. We currently utilize two different techniques to estimate upper Chesapeake Bay American shad instantaneous mortality (Z). Our tag-recapture data is used to estimate the mortality rate of shad captured at Conowingo Dam and lifted above the four hydrostations ($\mathrm{F}_{\text {lift }}$). A cohort-specific CPUE-at-age catch curve is estimates instantaneous mortality of the entire population. Fish lift data is only used when calculating CPUE-at-age because CPUE from different gears is not additive.

Appendix 8
Table 1. Annual indices of shad juvenile production (maximal mean CPUE) in the Mattaponi and Pamunkey Rivers from 1979-1994 (Bruce Hill per. Comm.).

${ }^{1 /}$ - = no data taken or insufficient sample size.

Appendix 8
Table 2. Coastal Shad Landings from Virginia (N. *1000), inriver landings, coastal effort, inriver effort, Pamunkey River Juv. Inde

OAS	YEMR	\csc	BAYC	COANTE	BAYE	RAPPM	RAPPFi	Yorka	YOREF	Madesut	IAMESF	PAMMI	MATTA	RAPPE	YCRKE	JAMESE
1	1980	7.00				0.0046	0.027	0.0361	0.250	0.029	0.271	07.1	38.8	3641	122	1359
2	1981	18.00.				0.0052	0.016	0.013	0.124	0.010.	0.094	05.3	18.0	539	177	900
3	1992	$18.00 \cdot$				0.00591	0.014	0.014	0.088 ${ }^{\text {a }}$	0.033	0.062	10.	21.1	377	1185	629
4	1583	15:001				0.00811	0.022	0.030	0.108	0.056	c. 501	07.5	18.5	296	1307	1469
5	1984	43.00				0.0220	0.052	0.043	0.165	0.040	0.1891	O2S	34.4	1780	1097	831
$\underline{6}$	1989	35.00				0.019.0.	0.934	0.030	0.093	0.005	0.0901	15.5	35.9	164	983	602
7	1188	34.00.				0.0140	0.040	0.039	0.076	0.040	0.0641	089	36.6	57	24	150
8	1987	36.00	96.3	21000	15000	0.0160	0.022	Qatil	0.05	9009	0.6651	01	18.9	$6{ }^{1}$	225	948
9	1888	51.00.	359	32.000	152.00	0.01201	0.029	0.014	0.040	0.023	0.157			45	776	473
10	1889	3000	56.0	4:6001	112.00	0.0120	0090	n.0.3	0.163	0.064	0.180			17	797	48
$!1$	1990	2600]	38.4	497.001	121.00	0.0030	0.027	0.004	0.053	0.077	0.092			62	860	48
12	1991	26009	22.3	Sceom	109.00	0.0020.	0.024	0.005	0.069	0.009	0.650	08.5	10.2	56	766	58
${ }^{1} 1$	t992	2600	5.2	583.00	116.00	0.0020	0.02	0.008	0.039	0.028	0.321	0.2	026	20	R802	142
14	1993	16.00	25.3	527.00	81.00	0.0020	0.014	0.016	0.029			0.9	48.7	13	439	
15	1594	7.00		S5300								22.11	61.0			
16	1995	6.00		534000								2.2	06.4			
17.	1996	:1.00		559.00								234	1783			

Appendix 8
Table 3. Annual indices of shad juvenile production (maximal mean CPUE) in the Mattaponi and Pamunkey Rivers from 1979-1996 (Bruce Hill per. Comm.).

Year	Mattaponi	Pamunkey
1979	38.1	57.4
1980	38.8	7.1
1981	18.0	5.3
1982	21.1	3.0
1983	16.5	7.5
1984	34.4	2.5
1985	35.9	15.5
1986	36.6	8.9
1987	18.9	2.1
1988	- ${ }^{1 /}$	-
1989	-	-
1990	-	-
1991	10.2	8.5
1992	2.6	0.2
1993	47.7	0.9
1994	62.0	22.1
1995	6.4	2.2
1996	128.3	23.4

${ }^{1 /}$ - = no data taken or insufficient sample size.

Appendix 8
Table 4. Virginia American shad landings, by water system

Y\%	Aubreyis	Scaric	Nix	Qumpeake	2ams	Yus	Rupataxicia	Protanis	Obs	joud
1773	1202	13686	N0	53514	173150	\| 297152	67384	12719.	2319	2436688
1974	4689	N0	10	\$65334	517299	171367	121210	41188	400	15061\%
1975	40799	100	Na	23130x	51527	19825	75833	7476	571	133663
1976	1sech	\$200	1 D	203335	24675	13353	2855	seas	1791	88\%7
197	55232	ND	10	6lst	300658	91927	45865	31083	45056	Henser
198	13151	N0	ND	177096	515237	428\%53	377\%	38183	28015	173504
9979	74662	672	N0	121396	359700	410861	17104	12306	290\%	S90\%s
1580	6943	24331	Nt	1209\%	259988	195126	11149	11570	2889	973\%
1281	22464	51212	10	50088	3163	126:04	428t	785	124	49919
1882	79192	197803	S	12750	30127	106515	739	1500	5474	595354
1983	206175	1532	1500	31245	168525	12150	4845	2085	59	01232
15936	503291	iclent	59	101941	240359	278099	1405	3302	200	1289716
1985	388157	58000	N	5759	28537	213888	ND	75	370	63098
1986	236321	89825	ND	715:	14.50	12゙105	N	261	1259	53115
1987	37201	85000	607	98047	3970	12807	ND	53	779	6300
1389	208984	228001	ND	9800	1 ND	42912	500	141	44	450151
1589	[12246]	217300	30	47709	2	6×80	N0	\%93	121	50313
1990	20858	128189	$2 \times$	\$503	217	40161	30	189	671:	\$4165
199	\#1703	64931	5	24189	50	2382	61	185	1246	45049
1992	38432	0911	37	35423:	5st	5767	1333	1951	\%	4NINC
$1 \% 3$	343936	10538	N0	2844	1112	24559	97	213	206	551600

Nowe: 1993 landings were collected from a mandatory reporting system; prior years' collections were from a voluntary system.

Table 5.

COMMONWEALTH of VIRGINIA

Appendix 8

Marine Resources Commission
2600 Washangion Averule
P. O. Bar 756
Newpon News Vhrginio 33007-0):56

June 16, 1997

MEMORANDUM

TO: Vic Crecco, Chairman
ASMFC Alosid Assessment Committee
FROM: Rob O'Reilly
SUBJECT: American Shad Stock Composition of Coastal Intercept Fisheries
Please find an update of the Virginia coastal American shad landings form 1980 through 1996, below.

As you know, I do not support the results (recaptures) from the 1991-92 Rudee Inlet, Virginia American shad tagging study, as a sound representation of the Virginia intercept fishery for shad.

At the time of this study the major Virginia intercept fishery was located in the northern coastal area of Virginia, from Quinby to Chincoteague. The intercept fishery off Virginia Beach and Rudee Inlet has been a minor fishery since 1988. The following table illustrates this fact. Data are in pounds of American shad.

Year	Southern Virginia Coastal	Northern Virginia Coastal
	61,243	34,228
1981	138,406	137,273
1982	57,794	197,805
1983	42,423	165,284
1984	409,851	231,087
1985	181,375	148,047
188	215,859	139,717
1987	133,200	261,172
1988	75,247	353,591
1989	64,567	335,194
199	21,758	264,702
199	103	399,464

Appendix 8
Table 6. CPUE based on VIMS Anadromous Program logbook data 1980-1993. American shad

		Máca		Ferankes		Gilloct
River	Yent	CPVE	Xingaxas	CPUE	Kikgenms	Senson Lenget of Net (m)
Rappahannock		0.0023	30.68	0.01421	186.77	13175.40
York		0.0159	6963.01	0.0294	12913.80	439732.00
Smane					---	
Rapachuminck	1992	0.0020	39.96	0.0250	499.10	19943.00]
York		D,003:	1819.26	0.1885	70001.00	780103.20
Jmer		0.6276	3963.54	0.22131	31769.20	143568.50
Rappehannock	1991	0.0024	136.06	0.02441	1376.55	56429.60
York		0.0053	4047.8)	0.06921	S2986.58	765872.00
James		0.0087	473.681	0.0595	3253.55	54639.90
Reppehannook	1990	0.0030	184.111	0.02701	1676.26\|	62061.00
York		0.0035	7027.391	0.03291	43507.071	859770.10
James		0.0173	840.27i	0.09191	4452884	48478.10
Rappahannock	- 1989	0.0121	573.7	0.0903	3805.501	47479.10
York		0.0263	20995.6	0.1027	81927.901	797443.90
James		0.0636	3079.6	0.1804	8737.901	4R423.301
Rappahunnock	1988	0.0116	523.9	0.0286	1287601	45026.60
York		0.0143	11074.1	0.0457	35546.001	775454.70
Junces		0.0232	1097.6	0.1573	7436.001	47274.30
Rappahamock	1987	0.0161	960.3	0.0318	$1903.00 \mid$	5978480
York		0.0111	9132.1	0.0553	4566130	825028.20
James		0.c083	8306	0.06451	611490	94828.60
Rappohannock	1986	0.0138.	790.2	0.0464	2662.20	37398.50
Yart		0.0390.	32133	0.0743	61218.46	\%23826.501
Fances		0.0403.	606388	0.0536	955650	150297.60
Rappabarnoek	1985	0.0187	3066.21	0.03351	5483.00	163778.40
Yorit		0.0297	29172.71	0.0930	91414.30	982648.10
Ianes		0.0249	15008	0.0895	53831.50	601583.30
Repphannock	1984	0.0217	3697.1	0.0520	8866.20	170424.60
Yort		0.04331	46191.1	0.1627	173727.601	1067621.80
Junes		0.0404	33544.1	0.1890	157028.50	330866.40
Reppehannock	1983	$0.008!$	2410.2	0.0216	638950	296068.40
Yat		0.0296	38542.1	0.1043	140830.20	1300885.10
Hepes		0.0354	81407.1	0.1 認	278974.80	140, 940,30
Repramminock	1982	c.0059	2206.6	0.0136	5107.40	376752.40
Yof		0.0144	17079.5	0.0 .575	10393160	1187954.00
Kamer		0.0978	20005,	0.0653	39177,40	628993.30
Reppehwnock	1981	0.0052	2000.9	amass	236230	5×38731.96
York		0.01301	1524931	0.1240	146600.10	1171230.10
Hemes		0.0102	9219.4	0.0936	84274.00	90017020
Retumatrack	1980	0.0045	1673.4	0.0268	9772.80	364649.00
York		0.0260	3179.7	02605	329as5 50	12 CzT 50
Itancr		0.0287	39036.31	02711	368268.50	1350342.30

Rob,

suthy

Appendix 9
Table 1. American shad landings and percentage, other than Albermarle Sound and Atlantic Ocean, NC, 1972-1996

	Cape Fear River		Coze Sound		Nouca fiver	Primlico River		Pamlico Saund	Othardreas		Stald Total	
Yeat	1 b	\%	b	\%	lb \%	1 b	$\%$	Ib \| \%	b i	\%	lb	
1072!	65,9681	14.3	4,5341	1.1]	81,7151 77.41	92.39]	19.8	92,069 19.7			468,484	
19731	32,120:		3, 0471	0.8	06.528121 .71	30,500.	9.4	$105,237132.81$			321,000	
1974	20,219!	5.5	5.12	1, 6	91,091 18.81	32,167	8.7	132.926\| 36.91			3688.833	
18751	22949	9.5			27,764 11.5	34,157	14.2	69,307\| 28.71			241,240	
1976i	7288	4.4			34,461 20.41	32,950,	192]	13,7431 ${ }^{\text {a } 2}$			167,920	
4977	16,16	13.3	2,575;	2.11	6.144 5.11	13,432,	11.1	3.17112 .61			12t,022	
1979	32.981	8.2	6,733]	1.7\|	$31.726{ }^{1} 731$	40,908	10! !	124,2431 30.91	1,500	0.41	402,047	
1979,	5,104	18.7	3.676	1.31	31.514114 .41	10.9711	4.61	69,486i 25.01			278,070	
13601	45,46 ${ }^{\text {a }}$	22.8	17,473	8.81	11.615 5.8:	6,4301	3.21	44,5641 22,4]	1,010	d.5	189,206	
1\$871	52,911	15.1	1,920	0.5	15,549 4.4.	3,761	2.81		15	0.03 :	351,500	
1 1882	78,184	19.0	4,780	1.21	18.1231 4.4 :	$5.080[$	12]	1228981 23.91		i	411,852	
1363	-8,728	14.7	2664	0.6	45,378\| 10.2.	53,7941	12.1!	$58,334113,11$	175	0.03:	445,879	
thes	69,840]	11.8	11,039	1.9	70,3051 12.0!	108,410	18.5i	85.177) 14.6	53	0.01	584,843	
1985	17.789	6.4	10,235	3.11	56,620\| 17,2	40.675	1231	52,6071 15.91		-	329,639	
t988i	37, 0481	10.0	14,918	4.0	70,8801 13.01	18,138	4.8\|	49,357\| 13,2			!	373.794
1987!	14, $\mathrm{CO} \mathrm{O}_{3}$	4.31	25831	0.71	47,117! 14,41	22,40\|	6.91	50,168] 15.31		0.01	327.646	
1988	5,266	1.9	4,4331	1.6.	15,160: 5.31	48,607\|	16.5	33,485 11.81		1	283.050	
1989	:2,749	4.0	5,450\%	1.71	13.452 421	17,012]	5.3	27,988 8.31	250	$0.07!$	323,335	
1980\|	26,518	8.5:	1,6481	0.61	11,543\| 3.71	6.5201	211	14,8031 4.81	$423 i$	0.1\|	313.550	
1981]	30.140	\$0.91	1,652	0.61	2880\| $1.0 \mid$	${ }_{4} 8881$	0.91	G,8271 $\hat{3} \mathbf{6 1}$	4431	0.21	276507	
1992.	44,250	18.6	63	0.021	13,808] 5.81	14,231\|	5.9	8,5461 3.51	2,2831	0.91	237,1458	
1693)	62, 778	34.3	明	0.041	8.5381481	3,033	1.71	3,1021 1.71			178,750	
1994	10,771	9.9	108	0.11	7.116\| 6.5	4.039	3.6	4.8441 4.51	129	0.11	110.975	
18959	14,180	5.5	22	0.01	15.311 7.4	9,573	4,6	5,232 28.	581	0.41	205.836	
1980\|	26,818	13.4	\$34	0.41	24,439 12.2\|	8.672	4.3!	9.115i ${ }^{\text {4 }}$	5,357\|	27	199,558	

Appendix 9
Table 2. Coastal Commercial Landings (LBS *1000) from North Carolina Rivers, Coastal Commercial Landings in Numbers (N *1000) FR 1

1	1980	147	37	68.7	45.5	11.6	6.4	2.41
2	1981	272	68	66.7	52.9	15.5	9.8	0.89
3	1982	312	78	118.0	78.2	17.1	5.1	1.48
4	1983	225	56	216.0	65.7	45.4	53.7	1.88
5	1984	498	125	227.0	69.0	70.3	108.4	2.05
6	1985	262	65	148.0	17.8	56.6	40.7	2.55
7	1986	370	92	120.0	37.0	70.9	18.1	1.87
8	1987	463	116	149.0	14.0	47.1	22.6	2.76
9	1988	482	116	128.0	5.3	15.1	46.6	1.64
10	1989	613	153	209.0	12.7	13.5	17.0	2.14
11	1990	424	106	214.0	26.5	11.5	6.5	1.73
12	1991	400	100	209.0	30.0	2.9	2.6	2.30
13	1992	371	93	131.0	44.3	13.8	14.2	1.75
14	1993	241	60	73.0	62.3	8.5	3.0	2.02
15	1994	152	38	50.0	10.9	7.2	4.0	.
16	1995	242	81	60.0	11.2	15.3	9.6	.
17	1996	323	81	65.0	26.8	24.4	8.7	.

Appendix 9
Table 3. Commercial landings and value of American shad in North Carolina, Atlantic Ocean and the Albemarle Sound area, 1972-1995, and percentages contributed by area.

	Landings in Pounds			Percent (lb)		Value in Dollars		
	State	Atlantic	Albemarle	Atlantic Albemarle	State	Atlantic Albemarl		
						e		
Year	Total	Ocean	Sound	Ocean	Sound	Total	Ocean	Sound
1972	468,484		130,399		27.8	111,609		26,997
1973	321,000		80,770		25.2	85,491		22,102
1974	368,833		116,502		31.6	105,668		28,531
1975	241,240		87,063		36.1	82,815		29,280
1976	167,190	1,547	78,301		46.8	65,227		30,014
1977	121,022		79,594		65.8	54,764		35,234
1978	402,017	5,000	158,908	1.2	39.5	144,986	530	38,233
1979	278,070	25,064	85,158	9.0	30.6	121,662	6,915	26,389
1980	199,206	3,943	68,695	2.0	34.5	88,112	2,641	21,343
1981	351,500	107,415	66,732	30.6	19.0	189,793	48,798	29,330
1982	411,852	63,979	118,794	15.5	28.8	183,483	21,524	38,473
1983	445,879	3,788	216,058	0.8	48.5	187,360	2,248	80,039
1984	584,843	13,511	227,308	2.3	39.0	241,009	3,938	73,151
1985	329,639	3,159	148,555	1.0	45.1	152,547	766	54,173
1986	373,794	63,085	120,367	16.9	32.2	228,819	28,626	73,152
1987	327,646	41,162	149,923	12.6	45.8	215,115	29,194	81,354
1988	283,050	50,088	128,061	17.7	45.2	171,962	40,844	67,866
1989	323,396	38,548	208,807	11.9	64.6	214,896	34,309	125,94
1990	313,550	37,064	214,954	11.8	68.5	170,161	27,088	9
1991	276,507	19,217	209,900	6.9	75.9	221,880	15,039	101,52
1992	237,858	23,956	131,499	10.0	55.3	194,341	23,178	
1993	177,897	28,122	73,604	15.8	41.4	149,419	24,622	156,03
1994	110,986	33,896	50,314	30.5	45.3			9
1995	192,321	89,936	60,760	46.7	31.6			117,47
							55,387	

Table 4.
NAME: ASII.WK1
STATE: North Carolina
SPECIES: American Shad
SAMPLING PROGRAM: Juvenile Survey
LOCATION: Albemarle Sound Area
GEAR: 60' Bag Seine

	NUMBER PER UNIT OF EFFORT	AMOUNT OF EFFORT
1972	0.01	27
1973	0.3	63
1974	0.02	65
1975	0.1	66
1976	0	66
1977	0.16	65
1978	0.1	58
1979	0.27	52
1980	0.4	81
1981	0.04	69
1982	0.4	68
1983	0.01	69
1984	0.1	70
1985	1.44	71
1986	0.08	69
1987	0.11	69
1988	0.1	76
1989	0	66
1990	0	69
1991	0	68
1992	0	57
1993	0	57
1994	0	57
1995	0.01	57

Appendix 9

Table 5. Total mortality (Z) estimates for American shad in Albemarle Sound, NC based on the frequency of repeat spawners between 1972 and 1993. Age and spawning history data were taken from the NC commercial fishery.

Year	Frequency of Spawning Scars				$\mathrm{Z}^{1 /}$
	1	2	3	4	

1972	109	45	14	2	1.32
1973	78	11	9	3	1.00
1974	15	3	0	0	1.61
1975	77	11	1	0	2.17
1976	104	47	3	0	1.77
1978	29	1	0	0	3.40
1979	56	4	1	0	3.37
1980	105	125	47	1	2.41
1981	84	192	127	52	0.89
1982	198	154	40	8	1.48
1983	28	73	12	1	1.88
1984	213	180	73	3	2.05
1985	177	51	4	0	2.55
1986	87	39	6	0	1.87
1987	169	63	4	0	2.76
1988	207	144	28	0	1.64
1989	130	85	10	0	2.14
1990	118	113	20	0	1.73
1991	198	62	2	7	2.30
1992	179	179	31	0	1.75
1993	169	99	3	0	2.02

$1 / \mathrm{SPFQ}=\mathrm{a}+\mathrm{Z}^{*} \mathrm{~N}$,
where: $\mathrm{SPFQ}=$ the number of fish with N spawning scars;
$\mathrm{N}=$ number of spawning scars (ie $1,2,3$ or 4).

Appendix 10
Table 1. Riverine Fishing Mortality Rate (FMR) for American Shad

River System	Years of Study	Number of Shad Tagged		Tag Returns				Riverine FMR (\%) (calculated)	
				Within River		Outside River			
		\&	\%	\&	\%	\&	\%	\&	\%
Edisto	1989	82	7	35	0	5	0	48.6	0.0
	1990	95	11	41	3	2	0	45.6	30.0
	Total	177	18	76	3	7	0	46.9	18.8
Santee	1991	464	64	62	6	6	0	14.7	10.3
	1992	646	71	112	4	39	0	23.4	7.5
	Total	1110	135	174	10	45	0	19.7	9.3
Combahee	1993	7	5	0	0	0	0	ID ${ }^{1}$	ID
Edisto	1994	43	4	12	0	0	0	27.9	ID
	$1995{ }^{2}$	210	42	34	4	0	1	16.2	11.8
	$1996{ }^{3}$	213	25	23	1	0	0	10.8	4.0
	1997	139	6	19	0	1	0	14.4	0.0
	Total	605	77	88	5	1	1	14.7	7.8

${ }^{1}$ Insufficient data collected to determine FMR
${ }^{2}$ Flood conditions through much of the season caused a noticeable reduction in effort (as compared to that of more normal season) within the set net fishery and likely reduced the efficiency of this gear type as well.
${ }^{3}$ Below normal water temperatures lingered through much of the season and apparently delayed the spawning run. Many shad moved upriver after the closure of the gill-net season.

Table 2.

Inconsistencies in Population Indicators - Santee River			
YEAR			
1990	14,630	PASSESSMENT ^	81,358
1991	101,570	176,141	"REPORTED" LANDINGS ^
1992	35,630	146,693	2,672
1993	39,140	157,848	13,280
1994	35,457	211,546	9,525
1995	-	445,000	8,785
1996	-	477,000	30,615
			79,799

${ }^{\wedge}$ Pounds divided by 3.5 lbs ./fish to produce numbers of shad

\$50 Reward Tags vs. Non-Designated Reward Tags

YEAR	RIVER	NO. NDES.	\% RETURN	NO. \$50	\% RETURN
1990	Edisto	86	45.3	9	44.4
$1994 \&$ 1995	Edisto 1	22	31.8	7	14.3
$1991 \&$ 1992	Santee 1	768	22.3	37	24.3

${ }^{1}$ Only fish of comparable size and tagged during same period were used in comparisons NDES = Non-designated reward tags
$\$ 50=$ designated $\$ 50$ reward tags

Appendix 10

Table 3．South Carolina Shad Landings

Yeen	Wrometry	Whorment	Pay 0	Statar．		Sters．	Emprar	톤NN：	Contmen	Ssinnorn．st	Tralmer	Oramblur	5tormer
1987	NR	3780	13\％	2438	2xis	9894．	HR	1425	374	25051	11380	ssem	18．0．1
䞢	诚	50085	1169	筑	80407	4	NR	7004	176	3x．․ㅏ	11F91	15×10	150
1301		10 CW	5720	19479	2 3 10	40	HR	907	cy	28154	20，		$4{ }_{4}+12$
tres	200\％	Serat	1156		950	9004	1	6281	3515	388표	15904	2 Su ，	39899
＋40．	8077	40013	150\％	＊TT	t5985	14	樶	2088	382	2785		x－3n	（3174）
1804	E61	100\％	2988）	3780	4 ¢59	$4{ }^{4}$	200	3	454	Trix	1.510	3rem	5120．0．
148	6617	1646	13粚	23	16080	盛	NR	13159	$3{ }^{3}$	\％		13748	
1200	10.508	Sser	3\％	120090	159000	31011	NR	1056	67 T	2ncy	20\％2d	2009	
1887	11200	20120	50	zeso	8912．	10，	NR	59\％	\％	maxt		$350+17$	
189	20621	20031	3219	195	5070	3×519	398	651．	129n	67en	91116	36 Ens	Pex ${ }^{\text {ch }}$
1980	55120	［1729	5	3 OH	776	47x	NR		2 FF	B\％\％	11985		2 mby
1890.	19020	5118	Tis	\cdots	2089	P831	繒	129173	3	489	E9rat	151／54	225185
1981	30000	3 m	250	1888	4088	45149	4	4.00	30	$5 \mathrm{5m} \mathrm{c}_{1}$	1981090	144282	24594
toma	5111 D	7596	，	限		6400	N2	5	60	459419	标运㫛	14．4．1．	$2{ }_{2}$
1898	504	244	9\％9\％	17	8ㅗㅇㅕㅛ	眰閔	${ }^{1}$	248	n	3807	$4{ }^{4} 8$	Berch	120\％
904	10055	1501	15983	H	13408	3747	N	1275	時	043	55_{5}	7 Hes	122159
\％	1675	8141	30\％	H	205	107154	v	2491	mm	t509	12m？	$1{ }^{103}$	H1509
H5	10067	699	4	1202	2040 ${ }^{\text {\％}}$	299295	NQ．	n72	昭	IEAX	H20，	23 \％	5488
7997													

Appendix 10
Table 4. Age composition of male American shad from commercial catches by area and year.

EA	$\frac{\text { AGE }}{\text { YEAR }}$		(i)		$\underline{v}_{(1)}$		(*)		(5)		(1)
 	$\begin{aligned} & 1979 \\ & 1980 \\ & 1981 \\ & 1982 \end{aligned}$		$\begin{aligned} & (0.25) \\ & (0.00) \\ & (0.00) \end{aligned}$		$\begin{aligned} & (12.50) \\ & (36.56) \\ & (3.45) \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 23 \end{aligned}$	$\begin{aligned} & \{81.25\} \\ & (53.64) \\ & (79.31) \end{aligned}$		$\begin{gathered} (0.00) \\ (0.00) \\ {[17.24\}} \\ - \end{gathered}$		$\begin{aligned} & (0.00) \\ & (0.00) \\ & (0.00) \\ & (0.00) \end{aligned}$
$\underset{\text { Mree }}{\substack{\text { Pet }}}$ $\begin{aligned} & \text { Pea det } \\ & \text { Draise } \end{aligned}$ 0ranione	1975 1980 1941 1382	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & (0.00) \\ & (0.00) \\ & (0.00) \\ & (0.57) \end{aligned}$	$\begin{aligned} & 46 \\ & 51 \\ & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & (45.54) \\ & (27.42) \\ & (11.27) \\ & (5.85) \end{aligned}$	$\begin{array}{r} 51 \\ 133 \\ 167 \\ 178 \end{array}$	$\begin{aligned} & \{\$ 0.50\} \\ & \{71.51\} \\ & (81.86) \\ & (67.68) \end{aligned}$	2 14 61	$\begin{aligned} & (3.56) \\ & (4.06) \\ & (6.86) \\ & (25.19) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & (0 . \infty) \\ & (0 . \infty 0) \\ & (0.00) \\ & (0 . \infty) \end{aligned}$
Staree 	1979 1980 1981 1982	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & (0.00) \\ & (0.60) \\ & (1.20) \\ & (2.17) \end{aligned}$	$\begin{array}{r} 4 \\ 42 \\ 7 \end{array}$	$\begin{aligned} & (21.00) \\ & (25.53) \\ & (8.43) \\ & {[10.87)} \end{aligned}$	14. 55 63 29	$\begin{aligned} & (73.70) \\ & (74.47) \\ & (75.96) \\ & (\$ 3.04) \end{aligned}$	$\begin{array}{r} 1 \\ 0 \\ 12 \\ 11 \end{array}$	$\begin{aligned} & (5.50) \\ & (0.00) \\ & (14.46) \\ & (25.91) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(D.en) (0.00) (0.00) (0.00)
Ediste衴ver	$\begin{aligned} & 1979 \\ & 1989 \\ & 2981 \\ & 1882 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & (1.70) \\ & (0.00) \\ & (0.00) \\ & (0.00) \end{aligned}$	$\begin{aligned} & 23 \\ & 25 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & (50.00) \\ & (34.25) \\ & (16.13) \\ & (12.93) \end{aligned}$	$\begin{aligned} & 28 \\ & 48 \\ & 44 \\ & 64 \end{aligned}$	$\begin{aligned} & \{4 * .20\} \\ & (65.75) \\ & (70.97) \\ & \{85.12) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & (0.00) \\ & (0.00) \\ & (12.90) \\ & (3.90) \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & (0.00) \\ & (0.00) \\ & (0.00) \\ & (0 . \infty) \end{aligned}$
starananh River	197 1980 3981 19\%7	$\begin{aligned} & 2 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & (2.10) \\ & (0.00) \\ & (0.64) \\ & (0.00) \end{aligned}$	$\begin{gathered} \$ 1 \\ 17 \\ 29 \\ 4 \end{gathered}$	$\begin{aligned} & (59.30) \\ & (16.35) \\ & (18.47) \\ & (5.84) \end{aligned}$	$\begin{array}{r} 43 \\ 16 \\ 115 \\ 93 \end{array}$	$\begin{aligned} & (44.80\} \\ & (82.69) \\ & (73.25) \\ & (79.48) \end{aligned}$	$\begin{array}{r} 0 \\ 12 \\ 16 \end{array}$	$\begin{aligned} & (0.00) \\ & (0.83) \\ & (7.64) \\ & {[23.68)} \end{aligned}$		$\begin{aligned} & (0 . \infty) \\ & (0.00) \\ & (0.00) \\ & (0.00) \end{aligned}$
A11 Ar*an	$\begin{aligned} & 1874 \\ & 10100 \\ & 1901 \\ & 1012 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	(2.40) (0.00) (0.37) (0.40)	$\begin{array}{r} 132 \\ 113 \\ 30 \\ 46 \end{array}$	$\begin{aligned} & (85.50) \\ & (35.16\} \\ & (13.04) \\ & (6.14) \end{aligned}$	$\begin{aligned} & 14 \% \\ & 384 \\ & 412 \\ & 364 \end{aligned}$	$\begin{aligned} & (51.40) \\ & (73.15) \\ & (77.60) \\ & (72.37) \end{aligned}$	$\begin{array}{r} 5 \\ 52 \\ 52 \end{array}$	$\begin{aligned} & (1.50) \\ & (0.60) \\ & (0.51) \\ & \text { (18. } 0.9) \end{aligned}$		$\begin{aligned} & {[0 .-00]} \\ & (0 . e \theta) \\ & (0 .-\infty] \\ & (0 . \infty) \end{aligned}$

Table 5.

SAMPLING PROGRAM: Juvenile Trawling
LOCATION: Altamaha River
Gear: 4.6 Meter Semi-balloon Otter Trawl

CPUE (FISH/1000 M**2)		\% S.E.
1982	9.7	31.4
1983	1.9	18.1
1984	15.9	21.0
1985	1.1	22.0
1986	1.2	24.8
1987	3.7	44.0
1988	1.8	19.6
1989	5.0	22.3
1990	1.1	17.4
1991	2.9	15.6

** Juvenile indices of abundance did not track changes in relative year-class strength over time. Nine of the ten years of data showed no significant difference **

Appendix 11
Population Size ($\mathrm{N} * 1000$), Coastal Landings ($\mathrm{N} * 1000$), Inriver Landings ($\mathrm{N} * 1000$), Recruitment, FR, FC and FT for the Altamaha River

OBS	YEAR	TPOP	ALTCST	ACATCH	REC	FR	FC	FT
1	1982	114354	8.54	56.180	115	0.75502	0.077485	0.83251
2	1983	247.10	6.10	79.530	124	0.40048	0.024996	0.42547
3	1984	206.59	11.59	68.250	101	0.43078	0.057737	0.48852
4	1985	219.27	4.27	94.600	80	0.57982	0.019666	0.59948
5	1986	88.93	7.93	42.120	81	0.73397	0.093400	0.82737
6	1987	148.59	11.59	63.020	106	0.61619	0.071210	0.69740
7	1988	136.54	8.54	53.760	142	0.54473	0.064587	0.60931
8	1989	103.32	7.32	50.880	174	0.75502	0.073483	0.82851
9	1990	75.49	5.49	31.500	231	0.59784	0.075505	0.67334
10	1991	79.88	4.88	30.000	.	0.51083	0.063037	0.57386
11	1992	119.66	3.66	44.080	.	0.47804	0.031064	0.50910
12	1993	147.44	2.44	37.700	.	0.30111	0.01668	0.31779
13	1994	190.05	3.05	50.490	.	0.31471	0.016179	0.43269
14	1995	211.71	6.71	67.650	.	0.40048	0.032207	0.47379
15	1966	292.33	7.93	102.384		0.44629	0.027502	

```
//EPJ5254W TOB (EP,AGGY, 1,5),'HOWELL',
// MEGLEVEL=(1,1),CLASS=A,TIME=1
/*LOGONID EPJOOOO
//STEP1 EXEC SAS
//GDEVICEO DD DSN^EPP.R5.SASGRAPH .DEVICES,DISP=SHR
//SYSIN DD *
* APPENDIX 12. THOMPSON -BELL YPR AND SHEPHERD S-R MODELS FOR
SHAD:
* WEIGHT = SSB;
* AGE-SPECIFIC M;
DATA CALC:
```

ARRAY L AGE\{40\} Al-A40:
ARRAY MIG(25) M1-M25:
ARRAY MAT(25) MAT1-MAT25;
ARRAY M\{20\} M01-M020;
ARRAY R\{20\} RO1-RO20;

*/	
A/	
/	$20 ; ~$

E=1.5;
RECRUITMENF */
K=2121:
*/

* AGES AT IENGTH:
L AGE\{16\} $=3.0$;
L_AGE\{19\} -5.0;
* migration rates (percent left in rivers);
MIG\{1\}=0.9;
MIE\{2\}=0.9:
MIG\{3\}=0.9;
MIG $\{4\}=0.0$;
MIG\{5\} 0.0 ;
MIG\{6\}=0.0;
MIG\{7\}=0.0:
MIG\{8\}-0.0;
DO $\mathrm{I}=\mathrm{g}$ TO 12;
MIG\{I\}= 0.0;
END;
*MATURATION RATES (FRAC MATURE);
MAT\{1\}-0.0;
MAT\{2\}-0.0;
MAT\{3\}=0.0;
MAT\{4\}-0.2;
MAT\{5\}=0.6;

```
MAT{6}=1.0;
MAT (7)=1.0;
MAT{B}=1.O;
MAT{9}=1.0;
DO MA=10 TO 12:
MAT(MA}=1.0;
END;
```

*AGE-SPECIFIC NATURAL MORTALITY;
$M\{1\}=0.3$;
$M\{2\}=0.3$;
$M\{3\}=0.3$;
$M\{4\}=0.36 ;$
M\{5\}=0.48:
$M\{6\}=0.60$;
$M\{7\}=0.60$:
$\mathrm{M}\{8\}=0.60$;
DO MO-9 TO 12 ;
$\mathrm{M}\{\mathrm{MO}\}=0.60$;
END:

* PARTIAL RTC VECTOR;
$\mathrm{Z}\{1\}=0.0$;
$R\{2\}=0.0$;
$R\{3\}=0.0$;
$R\{4\}=0.45$;
$R\{5\}=1.00$;
$\mathrm{R}\{6\}=1.00$:
$\mathrm{R}\{7\}=0.90$;
DO RO= 8 TG 12;
$R\{R O\}=0.80$;
END:
$\begin{array}{ll}\text { DO BAYREC= } 16 ; & / * \text { LGTH AT RECRUTT TG BAY FSHY *// } \\ \text { DO COASTR } & 16 ;\end{array} \quad / *$ LGTH AT RECRUIT TO COAST FSHY*//
DO FR= 0.0. 0.01 to $1.4 \mathrm{by} 0.01: / *$ FISHING MORTALITY IN RIVER
$* 1$
DO $\mathrm{FO}=0.0$: $\quad f^{*}$ FISHING MORTALITY IN OCEAN $* /$
DISCARD $=0$;
*/
PIECESE= 1;
PIECESC=0;
DO AGE= 1 TO 12 ;
X=1.0;
MAGE - L AGE(BAYREC): $\quad / *$ MEAN AGE AT MIN
LENGTH (BAY) $* \overline{7}$

```
                                    /* RELEASE MORTALITY
```

/* MEAN AGE AT MIN

```
    D_AGE = M_AGE - AGE; /* DE£TA AGE
*/
    IF O < D_AGE < 0.5 THEN DO; /* SUBREGAL DURING ALL
OR PART */
    RATIO = D AGE/O.5 ; /* OF EIRST HALF OF
    FPRIMEB1 = X* DISCARD * RATIO;/* F PRIME IST HALF OF YEAR
*/
*/
YEAR
*/
    END;
    ELSE IF D_AGE >= 0.5 THEN DO; /* SURLEGAL DURING
ALL OR PART */
    IF D_AGE > 1.0 THEN D_AGE = 1.0; /* OF SECOND HALF OF
YEAR
    RATIO =(D AGE-0.5)/0.5;
    FPRIMEEI = X* DISCARD; /* F PRIME IST HALLF OF YEAR
*/
    FPRIMEB2 = X*DISCARD * RATIO;/* F PRIME 2ND HALF OF YEAR
*/
    BAYFI = 0; /* F IN OCEAN 1ST HALF OF YEAR
    BAYF2 = FO* X*(1.0 - RATIO); /* F IN OCEAN 2ND HALF OF
YEAR
    END;
        ELSE DO: /* LEGAL DURING WHOLE
YEAR */
    FPRIMEB1 = 0;
OF YEAR
    FPRIMEB2 = 0;
OF YEAR */
    BAYFI = FO;
*/
    BAYF2 = FO:
    /* F 2ND HALF OF YEAR
*/
    END;
```

/* LEGAL DURING WHOLE
/* F PRIME. IST HALF
/* F PRIME 2ND HALFF
/* F LST HALF OF YEAR
/* F 2ND HALF OF YEAR

```
FISHING RATE */
    M AGE = L_AGE(COASTR);
LNGTH (COAST)*/
    D_AGE = M_AGE - AGE;
*/
    IF 0 < D_AGE < 0.5 THEN DO:
OR PART */
        RATIO = D_AGE/O.5 ;
        FPRIMEC1 =X *DISCARD * FATIO:
YEAR */
```

/* SCALING FOR
/* MEAN AGE AT MIN
/* DELTA AGE
/* SUBLEGAL DURING ALL
/* OF FIRST HALF OF
/* F PRIME IST HALF QF


```
MIGRATE OUT */
    SURVIVE= SURVIVE - MIGRATE; /* OCEAN SURV AFTER
MIGRATE */
    SURVIVEB= EXP(-ZB2*0.5) * SURVIVE: /* OCEAN SURV :AT END OF
YEAR */
    DEATHS2= SURVIVE - SURVIVES; / * DEATHS 2ND HALF OF
YR */
        CATCH2= (BAYF2/ZB2)** DEATHS2
        DEATHSB= DEATHS1 + DEATHS2: /* NBR THAT DIED IN
OCEAN */
    SURVIVE= EXP(-ZC1 *0.5)*PIECESC; %/* RETURNING SPAWNERS*/
    DEATHSI= PIECESC-SURVIVE; /* DEATHS 1ST HALF OF
YR */
    CATCH3=(1-EXP(-FR))*DEATHS1; /** RIVER CATCH*/
    SURVIVE= SURVIVE+MIGRATE; /* COAST SURVIVORS 2ND
HALF */
    SURVIVEC = (SURVIVE+MIGRATE)-CATCH3;./*RIVER SPAWNERS*/
    DEATHS2= SURVIVE - SURVIVEC;
                                    /*. DEATHS 2ND
HALF OF YR */
    CATCH4= (BAYF2/ZC2) * DEATHS2; /* CATCH 2ST HALF
OF YR
    DEATHSC= DEATHS1 + DEATHS2; 
ON COAST */
    COASTCAT= CATCH3; 崄 CATCH FROM
RIVER BAYCATC
OCEAN */
    WT=12*(1-EXP(-0.32*(AGE-0.26.)))**3.0;
                                    /* WEIGHT AT AGE
*/
    SSB-(SURVIVEB+SURVIVEC) * WT*(MAT {AGE});
    TSSB+SSB;
    KX=(A*(TSSB)-1);
    IF XX >o 0
*/
        ELSE SP=O
    IF SP>0
        THEN RECRUITS=SP/TSSB; /* NUMBER OF RECRUITS IN
SR FUNCTION */
    ELSE RECRUITS=0;
    CATCH=BAYCATCH+COASTCAT; /* COMBINED CATCH
*/
```

```
    PIECESB=1; PIECESC=0;
    TSSB=0; TSPAWNER=0;
    TBAYCAT=0; TCOASTCA=0; TCATCH=0;
    TBAYLD=0; TCOASTYD=0; TYYELD=O;
    END: % /* DO COAST R */
PYECESB=1; PIECESC=0;
TSSB=0; TSPAWNER=0;
TBAYCAT=0; TCOASTCA=O% TCATCH-0;
TBAYLD=0; TCOASTYD=0; TYIELD=0;
END; /* DO BAY R */
KEEP BAYREC COASTR FO FR TYIELD TSSB SP RECRUITS: TOTALYD BAYWT
COASTWT;
RUN:
PROC SORT DATA=CALC;
    BY BAYREC COASTR FO FR;
RUN;
DATA DOIT;
    SET CALC;
    BY BAYREC COASTR.FO FR:
    IF LAS'.FR;
RUN:
PROC PRINT;
    VAR BAYREC FR FO TYIELD
        TSSB SP RECRUITS TOTALYP BAYWT COASTWT;
    TITLE 'AMERICAN SHAD FROM THE HUDSON RIVER BIOMASS AND
RECRUITMENT';
    TITLE2 'ALPHA ESTIMATED FROM S-R DATA WITH RECRUYTMENT ESTIMATED
FROM UTILITIES, 1974-1994%!;
RUN:
/*
//
```


Attachment A: Stock Contributions for American shad landings in mixed stock fisheries along the Atlantic coast

Shad Stock Assessment Subcommittee Coastal Subgroup:
K. Hattala, R. Allen, N. Lazar and R. O'Reilly

Mixed stock fisheries for American shad occur in many coastal Atlantic states. Mixed stock fisheries occur in ocean waters in nearly all states, except FL, GA and minimally in CT. An additional mixed stock fishery occurs within non-ocean state waters of Delaware and New Jersey in lower Delaware Bay. The fisheries occur primarily on pre-spawning fish, beginning in late winter for southern states (NC-SC), late February through April in mid-Atlantic states (VA-NY), and from summer to late fall in New England waters.

During the current assessment there was a need to understand and quantify the effects of mixed stock harvest for coastal shad stocks. Our group attempted to apportion mixed stock landings using the most current, available data on distribution: several tagging and MtDNA studies. Apportionment for mixed stock fisheries was done only for the years 1980 to 1996.

Stock Groupings

It must be understood that the data used to assign stock contribution are minimal and could be improved by continued tagging or other (DNA or otolith mineral) studies. Stock composition, in real time, is thought to vary considerably on a day to day, week to week basis as shad migrate along the coast. It is not known to what degree stocks mix or intermingle, but tagging and DNA data suggest that the variability we assumed is real. Changes in stock size may also have occurred for some, or all, stocks for the period 1980 to the present. We assumed that the percentage developed would be applied for the entire period, although stock size may have changed during the 1980-1996 period. The uncertainty associated with this assumption is high. However, it was made because no other data are available to adjust for the variation in stock size over time.

Because of the sparsity of data, our group felt it best that given the data, combining areas along the coast would result in "average" estimates. "Average" refers to the fact that as fisheries operate stocks can be selectively harvested in a short period of time or at some variable level through time, depending on the duration of the fishery and time of year. Data do not allow for a more fine tuned approach.

Mixed stock fisheries were grouped into several regional areas: southern, (SC-NC) lower midAtlantic: (VA-MD) upper mid-Atlantic: (DE-NJ) and northern: (NY-NE) (New England) (Table 1). These regional areas were developed based on timing of fisheries along the coast and the stocks that are affected by each regional fishery.

Regions : SC-NC, DE-NJ and NY-NE

Stock contributions (\%) listed in Table 1 were developed from tagging studies for the SC-NC, DE-NJ and NY-NE (New England) areas. The SC-NC area percents were derived from two tagging studies conducted in ocean waters off North Carolina (Parker 1992, Table A1) and South Carolina (McCord 1986-1988, Table A2). Results from a recent tagging study, conducted in 1995-1997 in lower Delaware Bay, were used for the DE-NJ area (Table A3). These tagging studies occurred throughout most of the fishing season for each of the areas.

The only data available for the NY-NE area are from early studies conducted in the New York Bight (Talbot and Sykes 1958, summarized in Dadswell et al. 1987, Table A4) .

Region: VA-MD

MtDNA studies were used to apportion harvest for the VA-MD region (Table 1). Discussions occurred within the Shad Stock Assessment Subcommittee (March 1997 and July 1997 meetings) over the use of DNA versus tagging data. The DNA data was used as the tagging study conducted in ocean waters off MD and VA (Jesien 1992, Table A5) were thought to be limited in ability to sample the harvest.

For the 1980-88 period, percentages in Table 6 represent an average of three sample areas over two years: the 1992 and 1993 harvests from Virginia fisheries off Rudee Inlet and Wachapreague and the 1993 Ocean City, Maryland harvest of coastal shad. For the 1989-96 period, percent composition is based on average stock composition determined for the 1992 and 1993 Wachapreague fishery and 1992 Ocean City fishery (three sample areas).

Landings and apportionment to affected stocks

The step-wise progression of apportionment of mixed stock/ocean fishery landings are as follows:
Table 1 Percents calculated from tagging or MtDNA studies, as explained above.
Table 2 Landings (in thousand of pounds) of American shad listed include those from mixed stock / ocean fisheries only. They do not include landings from natal or inland systems. Sources of the landings are primarily from National Marine Fisheries Service or state reports given to our group.

Table 3 Landings in Table 2 were adjusted based on percent reporting, listed on the first line of Table 3.

Table 4 Adjusted landings were then added together, from each state's fishery, into the four regional groups: i.e. SC and NC were added to form the SC-NC group.

Table 5 Please note that the headings in Table 5 are the same as headings in Table 1. Table 5 lists, by year, the total pounds harvested in the affected stock or group (by state) of stocks. Each number was calculated by multiplying each percent listed in the column under each affected stock (Table 1) by the landings harvested by each of the four groups, listed in Table 4. The total harvest for an affected stock is the sum of the harvest of the four regional groups. (A blank on Table 1 equals a value of zero, so that region would not be included in the sum).

Table 6 Pounds of fish, listed in Table 5, were converted to numbers of fish by dividing by the average weight of an individual stock(s).

References

Brown, B.L. and J.M. Epifano. 1995. Mixed stock analysis of American shad in Virginia's and Maryland's coastal intercept fisheries. Report to Virginia Marine Resources Commission, Newport News VA, USA.

Dadswell, M.J., G.D. Melvin, P.J. Williams and D.E. Themelis. 1987. Influences of origin, life history and chance on the Atlantic coast migration of American shad. IN Common strategies of anadromous and catadromous fishes. American Fisheries Society, Symposium \#1.

Hattala, K., R. Jesien, V. Whalon and R. Allen (in progress, 1997). Cooperative American shad tagging program in the Hudson River and lower Delaware Bay. NY State Dept. of Environmental Conservation, Univ. of Maryland- Eastern Shore, Hudson River Foundation, and NJ Dept. of Environmental Protection.

Jesien, R., S. Gaichas, J. Serafy and C. Hocutt. 1992. Stock composition of coastal Maryland and Virginia American shad fishery: 1992 tagging study. Report to Maryland Dept. Of Natural Resources, Annapolis, MD, USA.

McCord, W. 1988, 1987,1986. Monitoring and assessment of South Carolina's commercial shad fishery and incidental catch of sturgeons. Completion reports to National Marine Fisheries Service.

Parker, J.A. 1992. Migratory patterns and exploitation of American shad in the near shore ocean of southeastern North Carolina. N.A. Jour. of Fish. Management 12 (4) 752-759.

Talbot G. B. and J.E. Sykes. 1958. Atlantic coast migrations of American shad Fishery Bulletin 142.

Stock contributions from American shad landed in mixed stock fisheries along the Atlantic coast．

Year	50，	NK	Y／	M0	DE	N3	NY	FIT	34	$\mathbf{N H}$	ME
1820	155	4	58	0	90	129	114	2	8	7	祖
1981	189	107	276	0	184	131	58	71	17	5	93
1882	245	64	$27 T$	0	327	280	74	79	29	3	20
1983	208	4	208	20	218	137	33	24	14	3	39
1984	394	14	644	19	246	200	34	37	30	5	34
4995	138	\ddagger	332	150	190	215	94	91	22	7	16
1006	225	63	356	125	200	15	73	52	60	17	20
1987	190	41	735	119	246	\＄05	12	104	41	41	25
1848	258	50	－29	255	21	24	15	122	51	46	3
1803	228	39	400	488	217	399	25	42	44	31	46
1808	168	$3 T$	324	234	475	449	5	23	6	30	12
1994	144	19	400	234	460	384	25	38	1	16	2
\％	108	24	432	139	235	208	21	13	0	10	1
T＊en	65	28	487	78	303	320	8	41	0	7	0
1884	72	34	204	34	206	217	B	10	0	27	1
1808	132	103	135	5	170	298	14	28	0	31	0
1938	272	58	382	ES	202	210	25	0	0	0	0

Year	$\begin{array}{r} 50 \% \\ 50 \end{array}$	$\begin{array}{r} 54 \% \\ \mathrm{HC} \end{array}$	70% VA	6×16 0	60\％ DE	$\begin{aligned} & 50 \% \\ & \mathrm{NJ} \end{aligned}$	$\begin{gathered} 50 \% \\ 4 Y \end{gathered}$	50 FI	coss M	$\begin{aligned} & 50 \% \\ & \mathrm{NH:} \end{aligned}$	50\％${ }^{\text {N1 }}$
1908	310	B	137	\square	179	289	277	4	17	14	58
1901	299	215	394	0	矮	201	117	0	35	11	189
19＋2	464	12.	20：	0	654	50	147	150	50	5	58
1893	411	－	27	48	45	353	68	4	27	7	7
1984	74	27	98.1	30	411	448	67	7	58	40	67
1905	275	5	475	380	$3: 7$	450	188	108	45	45	
1906	45	129	St．	2020	403	314	44	16	120	34	
19，07	748	＋2	505	280	482		23	200	\％2	63	
183\％	517	100	613	529	50	$4{ }^{4}$	31	244	197	苗	
1800	46	77	\＄71	9Fi	433	793	45	84	27	61	
1990	320	74	465	567	950	09	17	46	t1	76	24
1891	家家	3	57	488	000	799	53	5	1	$3{ }^{3}$	
409＊	218	40	617	198	51	971	4	7	1	218	3
1993	130	46	417	tis	008	－180	15	81	1	13	0
1984	144	4	291	67	458	＋14	12	35	\square	48	2
19en	2 ta	20	143	104	359	501	2	\％	4	61	－
180，	444	186	2\％	100	573	40	51	6	－	0	，

Y＊ap	SCNC	VA－MIJ	13E－NJ	HY－NE
1900	378	137	419	318
1981	514	39.4	$6-30$	405
1542	618	396	1214	422
1983	419	337	829	224
1994	813	959	829	277
1545	281	775	811	460
1595	577	780	723	451
1987	802	803	8 81	44＊
1b8s	E17	1：42	1049	532
1989	53.4	1547	8232	311
1950	397	1037	1848	168
1991	327	1038	1729	151
1992	265	1053	1122	92
1583	186	643	1246	150
1894	212	271	886	83
1985	471	245	859	146
1996	\＄00	422	943	54

Yepar	FL	6A	$3 C$	HC	\checkmark A	MP	Del，R，	Hugd．R．	ET．R．	NECN
1900	5	23	205	147	24	14	202	$1{ }^{3}$	248	162
1981	9	37	372	277	67	28	325	248	345	241
1982	10	45	473	312	67	38	581	443	464	280
1983	8	30	367	225	58	27	494	301	289	161
1804	18	59	E83	498	158	4	476	325	358	274
1985	11	20	3561	259	129	79	449	324	432	$3 \geq 1$
1985	13	42	4935	374	127	37	409	284	410	315
4887	15	58	62	46x	134	41	474	341	437	324
15809	突	44	E05	482	190	54	5093	420	535	412
1980	21	\％	700	613	145	94	724	517	433	24
1500	14	29	543	424	97	84	gest	684	462	171
1991	14	24	507	400	97	82	080	644	432	162
1092	13	19	403	371	95	68	611	437	707	121
1903	＊	13	305	241	60	\＄4	622	458	309	111
1934	5	15	201	152	25	31	420	318	221	7
t996	7	44	33＊	242	24	30	424	3081	209	5
1995	10	40	430	320	39	38	4631	341	215	8

$\begin{aligned} & \text { yentron } \\ & \text { Year } \end{aligned}$	$\begin{aligned} & 3.5 \\ & F L \end{aligned}$	$\begin{array}{r} 3.1 \\ \text { En } \end{array}$	$\begin{aligned} & 3.5 \\ & \hline \end{aligned}$	4	$\begin{aligned} & \mathbf{3} 7 \\ & \mathrm{Vn} \end{aligned}$	$\begin{array}{r} 4 \\ \times 10 \\ \hline \end{array}$	Met.rx	$\begin{array}{r} 4.8 \\ \text { Heats R } \end{array}$	$\text { CT. } \mathrm{F}_{\mathrm{L}}^{5}$	NECN
1800	1	7	59	37	7	3	45	3.	48	
19354	3	12	100	E8）	18	4	72	52	08	
1962	3	14	123	70	18	9	129	52	53	\＃－
1883	2	10	ts	St	15	7	90	E．	St	＊
1983	5	19	191	125	43	11	103	68	71	3
1995	3	7	EA	65	＊5	10	100	67	86	40
1936	4	13	141	92	34	＊	91	61	宜	－2
1997	5	19	178	146	36	10	105	71	87	0
1988	5	14	173	116	\＃1	14	132	88	197	哑
19ed	6	12	2＊）	135	39	23	161	108	E7	
1090	4	9	158	19＊	20	21	397	143	02	24
1951	4	4	145	100	20	20	1\％	134	08	3
1800	4	6	133	E8	24	17	139	81	47	\％
1993	2	4	87	60	1%	14	136	85	4	25
1904	1	5	57	38	7	8	54	0	44	1
1805	2	11	58	81	＊	8	94	67	＊0	10
1980	3	73	125	直	17	10	103	71	45	12

Table A-1. American shad tagging studies along the Atlantic coast.

 of Pith hangopernen 12(4):762.759.

Table A-2. American shad tagging studies along the Atlantic coast.

Table A-3. American shad tagging studies along the Atlantic coast.

	in Hucrein River.									
	1995				1398		1997		Aliyene	
	\qquad									
Cont. R. (CT. MA) ructean R. (NY. NJ) DIM. R. (PR, DE, KLI) Dow. Bry (DE, NM) DE - ockin NJ-ccean VA - ocean NS Can. ocesm	\$0								cotumi whagre.	
		\$00.0\%	6	467\%	31	91.34	37	90.2x	114	0.90
			4	30.8\%			*	2.4\%	5	0.04
					2	8.7\%	3	7.3×1	6	0.05
									1	0.01
Totimeturs	50		13		23					
\% of remeine	Maxay	-	$\because 0.5 \%$				20\% 2.45		- \%	
both yerly										
plit nual meah	5.5.5. 6									

Table A-4. American shad tagging studies along the Atlantic coast.

Table A-5. American shad tagging studies along the Atlantic coast.

Table A6. Estimated stock composition (by state/area) of American shad harvest for the 1992 and 1993 coastal intercept fisheries off Maryland and Virginia, based on MtDNA studies.

State/area affected	Percent Composition	
	$1980-88$	$1989-96$
FL	1.0	1.0
SC	23.6	31.7
NC	20.2	26.7
VA	16.4	9.3
MD	2.6	4.3
Delaware R.	11.5	11.7
Hudson R.	3.4	5.7
Connecticut R.	6.4	3.0
Canadian	14.6	6.0

Data from Brown, B. And J. Epifano. 1995.

Table A－7．Summary of NMFS and／or state commercial landings（pounds）of American shad．
Mixed section is used to determine stock contribution for mixed stock fisheries．

	Me	（NH	［14M	｜R1	C．	miximer		109\％＊＊	Max me：	｜Vaswaim	NC：min		下－				
VER					CTR．		DGTR	WR	－180	101994							120
（1）\％					17300	250500	450	C	0							mocke	
117																－ 8	4890
					140700	187500	2600	0	0						43000	188	2800
$4{ }^{1} 2$					240708	315790	2199	0	0						570000	280	2100
1093					25760	25590	1600	0	0						520000	29	1666
11.74					207240	94406t	1200	300	3						49250	224	1509
$1{ }^{105}$					10.5300	\＄59100	0	1900	，						4 cman	191	580
$1{ }^{178}$					530000	214103	0	9	0						arnata	27	0
1977					352400	${ }^{1} 177500$	0	3140	Δ						5 cos	247	3400
1970					Taxy	151400	0	0	0						780009	34.	－
\％978					2085000	S15300	0	0	0			112809				\％${ }^{\text {d }}$	0
1980					31050	133100		［imi	\bigcirc	Eramis	15595	\＄15391	183499		31050	140	4270
129					2007m	4anco		129010	0	223040	244）${ }^{\text {a }}$	285050	195920		215amm	981	12601
13年					280000	37200	：100	220%	0	306\％	347053	15914	125415		164＊90｜	052	
1985					438909	48900	4100	15205	0	－ 85275	42051	13\％${ }^{\text {P／}}$	225490		209891	1715	$1{ }^{1}$
1984					$36+100$	701400	749	14 l	0		31504	14068	21448 N		3108561	1458	ziven 1
1985					4 crem	75004	23100	13809	－	3000．8	25468	2453s	$24 \mathrm{Fal}{ }^{\text {2 }}$		magash：		
1208					3200\％	790788	17600	24.78	c	21757	110\％6	zras	157685		217274	BAS	422
1385					3 H	beatid	20808	10.40	0	251504	280480	\％20\％90	2tc531	13 F 8	200750	113	$\mathbf{3 0 4 0 1}$
1058					$1891 p$	7 Cm	17300	24F17	c	\＄4410	202062	7179 ¢	130404	r 4	1\％r970	154	41751
1909					18140	W0．6	I6500	1230	c	10335	234846	91405	141857	1176	159505	nta	它运i
1200					25805	－	4080		0	14ack	278404	क्ष＊8	sesta	：16920	150354	85	30162：
1994					145800	T2970	73302	11713	\checkmark	5063	25730	109	Tgat	4534	1170639	522	3－4．al
1302					144500	2 cosen	41785	\％24	0	4505	217000	1580］	82Ts	165	69363	454	51mil
1597					95680	1.510	1908\％	9305	0	6851	45000	4905	295s5	0	diduts	251	2080
15001					1043001	15762	90Es	1064	0	3	т7ago	50250	Tr7	131	453192	持	29413
4980					6550	1 mosym	11811	（c）${ }^{\text {cos }}$	0	3	102edz	15320	167001	0	702129	319	25104
168						121100	1109	10038	D	9	140805	370．${ }^{\text {a }}$			583811	270	1.140
t＊）												48901					

2. Fta goemi fuhery on FL slacky

HEAK		$\begin{aligned} & \text { FOR ErTmal } \\ & \text { UPPER BMM } \end{aligned}$	Bro. Meract
1800		551	
1981		6057	
1802		37561	
1509		12058	
198*	167	8074	3516
1985	1548	14283	7876
1568	5155	22902	18134
1987	T6F	27354	21823
1989	5148	42886	28714
1909	6214	75680	4380
190	15718	123830	59×20
1999	27227	138062	8412
1989	25721	7105255	88416
1884	13400	4758	3259
1984	\$2930	129492	9470
1805	50009	336891	219972
189\%	37513	203216	112217

Attachment B: Review of American Shad Petersen Population Estimates for the Upper Chesapeake Bay, 1980-1997

Maryland Department of Natural Resources Fisheries Service

INTRODUCTION

The American shad, Alosa sapidissima, is the largest anadromous clupeid migrating into Chesapeake Bay to spawn each spring. Historically, American shad was a valuable commercial and recreational commodity throughout the region. From 1942 to 1992 commercial landings of American shad from Maryland waters averaged approximately 1.3 million pounds. During the three-year period 1958 to 1960, sport anglers harvested nearly 44,000 American shad from the 10mile section of the lower Susquehanna River below Conowingo Dam (Plosila 1961).

Beginning in the early 1970's both commercial and recreational catches of American shad began to sharply decline throughout Maryland. By 1979, commercial landings had declined to 34,000 pounds while recreational interest had nearly disappeared. Consequently, in 1980 the state declared a moratorium on American shad fisheries in Maryland's portion of Chesapeake Bay. This closure remains in effect today. In addition to the moratorium, the Department of Natural Resources initiated an upper Chesapeake Bay American shad study. This study was designed to monitor the recover of Upper Bay American shad and assess stock status. The principle monitoring vehicle utilized was an adult population estimate based upon a mark-recapture exercise. This paper describes this exercise and discusses its use as a tool for population estimation.

METHODS AND MATERIALS

Since 1980, adult American shad have been collected for marking and/or subsequent recapture with four gear types at various locations in the Upper Chesapeake Bay. Their use is described as follows:

1. Pound nets are non-moveable nets set at specific locations called stands. Pound nets have been sampled in the upper Chesapeake Bay for American shad continuously since 1980 except for the years 1983, 1984, 1986, and 1987 (Table 1, Figure 1). When fished, pound net cribs were pursed, forcing fish to the outer edge where they were removed by a hydraulic net and placed on a culling board for sorting and tagging. Sampling from pound nets generally occurred from late March through mid-May with effort ceasing as water temperatures increased above $15^{\circ} \mathrm{C}$ and spent individuals or down-runners began to appear in the catches.
2. Anchor gillnets were employed to capture adult American shad in the Susquehanna River from 1980 to 1987 (Table 1). These nets were set approximately n mile west of Port Deposit, Maryland near the southern end of Spencer Island (Figure 1). Anchor gillnets were deployed after dark and fished continuously during periods of reduced turbine generation from Conowingo Dam and subsequent low river flows. Captured fish were placed in a round fiberglass tank, $48^{\prime \prime}$ in diameter and 30" deep equipped with a 1,500 gallon per hour bilge pump to create a circular current. Once the net was fished, the fish were transported away from the net to deeper water for tagging and release. Anchor gillnet fishing generally occurred from late April into mid-May depending on flow conditions. Since anchor gillnet could only be set and safely fished during low river flows, yearly effort was quite variable during this eight-year period. No more than two nets were fished per night.
3. The use of hook and line to capture American shad for tagging has been in continuous use since 1982 (Table 1). This effort occurs in the Conowingo tailrace approximately 250 yards below the dam face (Figure 1). Since American shad prefer certain current velocities and water depths, fishing locations have varied depending on turbine generation schedules and subsequent water discharge. Generally, the greatest amount of angling effort has been below units $8,9,10$, and 11, the four largest turbines. Standard procedure was to anchor and simultaneously fish two rods each rigged with two shad darts, one $1 / 8 \mathrm{oz}$. and one $1 / 4 \mathrm{oz}$. Dart color was restricted to red heads with white or yellow bodies and white or yellow tails. The darts were not retrieved but rather allowed to remain in the current, a technique referred to as "dead sticking." Length of line fished varied according to fish holding patterns while up to n oz. of extra weight was added to achieve proper depth. Hook and line effort generally began in mid-April and continued into late May or early June, depending on river flow conditions and the number of prespawned fish caught. Spillage of water through any of Conowingo Dam's flood gates during high water events precluded any hook and line activity for safety reasons.
4. The two fish lifts located at the base of Conowingo Dam accounted for the vast majority of tag returns from the Upper Bay stock, although no fish were marked from these collection devices. The west lift began operation in 1972 while the east lift became operational in 1991. Prior to 1996, operating protocols for both lifts remained relatively constant. Each lift would begin operation around April 1 and continue until mid-June when the shad run concluded. The initial schedule called for operation on alternate days until five or more American shad were collected during and operating day. Thereafter, the lifts would be operated daily unless the number of shad collected declined below minimum requirements or high river flows precluded safe operations. In addition, efforts were made to maximize attraction flows though each lift by modifying specific turbine operation patterns thereby altering discharge flows into the tailrace. American shad collected at each
fish lift were counted, sorted, and set aside for later upstream transport. Trap operators would record the numbers of tagged fish as they appeared in the lifts.

Beginning in 1996, operations at the west lift were modified in order to reduce costs and allow for necessary repairs. The modified schedule called for west lift operations to begin during the last week of April and continue daily through the first week of June. Lifting schedule for this predetermined 45-day period began at 11:00 A.M. instead of 7:00 A.M. and would continue until 7 P.M.. However, lift personnel had the option to either expand their effort in order to take advantage of fish abundance or reduce effort during non-productive periods. This schedule was continued for the west lift during 1997.

In 1997, completion of upstream passage at Holtwood and Safe Harbor dams enabled Conowingo's east lift to change to a fully automated operational schedule. Lifting of fish began on April 1 and continued daily through June 15 (flow conditions permitting). Initial operations were on a half-day schedule from 11:00 A.M. to 7:00 P.M. which subsequently increased to 7:00 A.M. to 7:00 P.M. once catches reached approximately 100 shad per day. The need to sort, count, hold, and transport American shad was eliminated at the east lift in 1997 as the fish collected could now be placed in a trough for direct passage above the dam. Identification, enumeration, and tag notation were accomplished through a viewing window manned by trap personnel.

American shad collected by pound net, anchor gillnet, and hook and line were recorded, but only fish judged to be in good physical condition were marked. Individuals close to spawning, partially spent, or post-spawned were excluded from tagging. Numbered T-bar anchor tags were inserted into American shad using Floy tagging guns. Tags were inserted into the dorsal musculature posterior to the dorsal fin at an angle conducive to streamlining.

STATISTICAL ANALYSIS

Chapman's modification of the Petersen statistic was used to calculate two estimates of returning American shad; Conowingo tailrace population and total Upper Bay population. Chapman's equation is expressed as:

$$
\frac{N=(C+1)(M+1)}{R+1}
$$

where N equals population estimate, C equals number of fish examined, M equals number of fish marked, and R equals number of marked fish recaptured (Ricker 1975). The total Upper Bay population estimate utilized American shad captured by all four gear types while the Conowingo
tailrace utilized individuals captured, marked, and recaptured only form the tailrace. A problem associated with recapture of pre-spawned, tagged American shad marked only form pound nets has occurred during the course of this study. Emigration of fish out of Chesapeake Bay through the C \& D Canal has been confirmed by tag returns, primarily from the Delaware River. In order to correct for this loss of marked fish in the Upper Bay estimate, an emigration factor was estimated using the following formula:

$$
E F=(A+B) \times C
$$

where $\mathrm{EF}=$ emigration factor;
$A=$ number of pre-spawned fish tagged from pound nets and recaptured outside the Upper Bay;
$B=$ total number of pound net marked fish later recaptured, regardless of gear type;
$\mathrm{C}=$ total number of fish marked from pound nets.
A list of the yearly emigration factors and the data used in their calculation is presented in Table 2. In addition, a 3\% correction factor for tag loss developed by Leggett (1976) specifically for American shad, was also utilized in both estimates.

RESULTS AND DISCUSSION

Data for calculating annual Petersen estimates are presented in Tables 3 and 4. Tailrace and Upper Bay population estimates and confidence intervals are presented in Figures 2 and 3, respectively. Confidence intervals were calculated based on sampling error using the number of recaptures in conjunction with a Poisson distribution approximation (Ricker 1975).

Ricker (1975) states that application of the Petersen statistic is justified only if six assumptions are met. Discussion of these six assumptions and their relationship to the tailrace and Upper Chesapeake Bay Petersen estimates is presented below.

1. The marked fish suffer the same natural mortality as the unmarked fish.

American shad collected by each gear were recorded but only those fish judged to be in good physical condition were tagged. Individuals that appeared stressed or had physical injury including excessive scale loss were not marked. Individuals close to spawning, partially spent, or post-spawned were also excluded from tagging.

Lukacovic (1998) investigated the short term mortality associated with catch and release angling of American shad in the Conowingo tailrace. Of the 309 individuals observed, less than 1% died during the experiment. A similar study conducted on angled hickory shad produced no catch and release mortalities (Lukacovic and Pieper 1996).

American shad studies on Connecticut River (Leggett 1976) determined that T-bar anchor tags had little effect on mortality based on recovery of double tagged fish although some mortality may have occurred as a result of handling and tagging. Leggett (1976) noted, however, that the magnitude of this mortality was no more than 2.2% and the bias in this population estimates associated from this factor was small. He concluded that interyear analysis based on population estimates can be considered to be unaffected by handling mortality if methodology was similar between years.
2. The marked fish do not lose their marks.

A tag loss of 3\% per year has been assumed for American shad tagged by DNR personnel. This was based on research done by Leggett (1976) who determined a 3% rate based on double tag and recovery experiments of American shad in the Connecticut River during 1972 and 1973.

The T-bar anchor tag utilized on Upper Chesapeake Bay American shad was inserted into the fish so that the T penetrated the dorsal musculature, posterior to the dorsal fin. The tag was also inserted at an angle conducive to streamlining. Before release, the tag was gently pulled to verify it was securely being anchored.
3. The marked fish are as vulnerable to the fishing being carried on as are the unmarked ones.

Selective vulnerability of tagged American shad may result from differences in behavior after tagging or because of the tag itself. The use of T-bar anchor tags for American shad should greatly reduce or even eliminate tag vulnerability because of their design. Unlike the Petersen disc tag, the T-bar anchor tag was not subject to entangling in nets. Since gillnets were not used in this study to collect fish for recapture, and this gear, in fact, is illegal to use during the spring in the Upper Bay, this vulnerability was further reduced.

Leggett (1976) found that Connecticut River American shad marked with T-bar anchor tags may delay their upriver migration approximately ten days. However, he attributed some of this delay (approximately five days) to their migration through the saltwater-freshwater interface. Since salinities in the Upper Bay during the spring were less that 1 ppt ., migratory delays related to this condition should be nonexistent.
4. The marked fish become randomly mixed with the unmarked fish, or the distribution of fishing effort (in subsequent sampling) is proportional to the number of fish present in different parts of the system.

Efforts to capture American shad for tagging in the Upper Chesapeake Bay began as the fish first appeared at the Aberdeen Proving Ground/Susquehanna Flats area (pound nets, mid to late March) and their subsequent arrival in Conowingo tailrace (hook and line, mid to late April). Operation schedules for the Conowingo fish lifts have varied over the years but generally one trap began fishing during the first week of April. For the three gear types, fishing continued on a regular basis (2-4 days/week for pound nets, every other day hook and line, and daily operation of the fish lifts) until pre-spawned American shad were no longer caught (mid-May pound net, late May/early June hook and line, mid-June fish lifts) due to high water temperatures.

A trend was noted between daily, cumulative catch at Conowingo fish lifts and the cumulative number of tagged fish recaptured during the last three years (Figure 4). Pearson's Product Moment correlation ($\mathrm{P}<0.10$) of daily catch and number of recaptures (both natural log +1 transformed) were highly correlated for these years (1997; $\mathrm{r}^{2}=0.44 \mathrm{P}<0.001,1996 ; \mathrm{r}^{2}=0.71 \mathrm{P}<0.001,1995 ; \mathrm{r}^{2}=0.66 \mathrm{P}<0.001$). This demonstrates that tagged American shad were randomly selected by the fish lifts in proportion to the ratio of tagged/untagged fish.

Ricker (1975) states that bias associated with non-random sampling is highly unlikely when different gears are used to capture fish for marking and subsequent recapture. No fish were marked from Conowingo Dam fish lifts, while 96% of recaptures during the eighteen years of this study have been by the two fish lifts.
5. Recruitment to the catchable population is negligible during the time of recoveries.

Since this study's inception in 1980, the capture and marking of adult American shad in the Upper Chesapeake Bay has generally begun in mid/late March and continued until late May or early June. Operation of one or both fish lifts at Conowingo Dam has normally commenced during the first week of April and continued until approximately June 15, weather permitting. This capture-markrecapture exercise, therefore, has occurred over a relatively short period of time, usually from 70 to 90 days.

Tagging studies conducted in the Connecticut River (Leggett 1976) from 1965 to 1973 were quite similar to those in the Upper Chesapeake Bay in terms of duration and adult marking. Leggett 1976 concluded that since this capture-mark-recapture exercise took place over a relatively short period of time (during the annual spawning migration April to late-May, early June) and only fully recruited adult fish were present in this spawning run, recruitment was not a factor in his Connecticut River population estimates. Ricker (1975) notes that if the effects of recruitment have been excluded, recoveries made over a period of time longer than a day or other short interval provide "no obstacle" to the accuracy of the population estimate.
6. All marked fish in the sample are recognized and reported.

Prior to 1997, American shad captured form both fish lifts at Conowingo Dam were individually handled so that all fish, both marked and unmarked, could be totaled. In 1997, the east fish lift became fully automated; consequently, total count and number of tagged shad were recorded by two trained observers at the east lift viewing chamber. These changes in east lift operating procedure increased the chances of missing both tagged and untagged American shad, which would, therefore, reduce the accuracy of the catch and recapture components of the Petersen statistic. Operating procedures at the west fish lift remained unchanged from 1996 and American shad captured in this trap were individually handled for later transport above York Haven Dam.

In order to compensate for this loss of accuracy from the east lift, attempts were made to analyze the 1997 Petersen estimate through various statistical procedures. This was done to determine the extent missed marked and unmarked fish had on the accuracy of the 1997 Petersen estimate and to what degree, if any, corrections could be made.

Relative abundance of American shad can be estimated and associated trends noted by examining the annual CPUE data of the various collecting gears. Measures of relative abundance from pound nets, hook and line, and the Conowingo fish lifts have been calculated as the geometric means (based on loge transformations) of fish caught per pound net day, fish caught per angling hour, and fish caught per lift hour, respectively. These data were loge transformed and geometric means used in order to normalize the data.

Analysis of these CPUE estimates indicates that the catch of adult American shad has been linearly increasing in all three gear types over time: (pound net: $\mathrm{r}^{2}=0.46$, $\mathrm{P}<0.01$; hook and line: $\mathrm{r}^{2}=0.60, \mathrm{P}<0.001$; fish lifts: $\mathrm{r}^{2}=0.61, \mathrm{P}<0.001$; Figure 5).

Comparisons of these CPUE estimates to the tailrace and Upper Bay Petersen estimates form 1980 to 1996 (Table 5) indicate:

- hook and line and fish lift CPUE's were correlated with loge transformed tailrace estimates (Figure 6).
- pound net, hook and line, and fish lift CPUE's were correlated with loge transformed Upper Bay estimates (Figure 7);

Annual CPUEs and trap catch (Table 6) were regressed against the corresponding natural log transformed population estimate for the years 1991-1996. The population estimates were then estimated for those regressions whose slopes were
significant $(\mathrm{P}<0.20)$ by inserting the 1997 CPUE into the equation and solving (Table 7).

Ricker (1975) noted that population estimates based on the Schaefer statistic will often provide more accurate estimates than a Petersen estimate. In the Schaefer method, both time of marking and time of recovery are divided into separate periods. A separate population estimate is then calculated for each period based on the portion of the population available for marking in time period i and available for recovery in time period j . The total population
is then the sum of these independent estimates. Ricker (1975) points out that by providing independent population estimates in successive time periods, the bias associated with nonrandom marking and sampling for recoveries was reduced. Specifically, since American shad enter the Upper Chesapeake Bay in several distinct waves or pushes, by stratifying these periods of tagging and recovery into separate independent estimates, the limiting effects of migratory behavior on the accuracy of the Schaefer estimate are reduced. Schaefer population estimates were calculated for both the Conowingo Dam tailrace and Upper Chesapeake Bay (Figure 8 and 9) and were correlated with the Petersen estimates $\left(\mathrm{r}^{2}=0.58, \mathrm{P}=\right.$ 0.04 , respectively).

LITERATURE CITED

Leggett, W. C. 1976. The American shad, Alosa sapidissima, with special reference to its migrations and population dynamics in the Connecticut River. In D. Merriman and L. M. Thorpe (eds.). The Connecticut River ecological study: The impact of a nuclear power plant. Am. Fish. Soc. Monogr. I. 252p.

Lukacovic, R. 1998. (In preparation). Recreational catch and release mortality of American shad (Alosa sapidissima) below Conowingo Dam.

Lukacovic, R. L. Pieper. 1996. Evaluation of the mortality rate of hickory shad (Alosa mediocris) caught and released by fly fishermen in Deer Creek, Maryland. Maryland Dept. Nat. Res., Technical Publication 19.

Plosila, D. S. 1961. Lower Susuehann Rivers port fishery survey, 1985-1960. In the Susquehanna Fishery Study, 1957-1960. A report of a study on the desirability and feasibility of passing fish at Conowingo Dam. The Susquehanna Electic Company, Conowingo, Maryland.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fisheries Research Board of Canada Bulletin 191.

Table 1. Gear types used to sample Upper Chesapeake Bay American shad, 1980-1987.

									\%	
	䍄		3 ${ }^{\text {a }}$	4	s	6	7		Giil	
									x	
1980				X	X	X	X		X	
1981				X		X			X	
1982				X		X			X	X
1983									X	X
1984									X	X
1985				x					X	X
- 1986									X	X
1987									X	X
1988	X	X		X						X
1989		X	X	-						X
1990		X		X						X
1991		-x		X				X		X
1992		\mathbf{X}						X		X
1993		\mathbf{X}			X					X
1994		\mathbf{x}			X					x
1995		X	X	x						X
1996		X		x		X				X
1997		X		X						X

1. For pound net namet, plense refer to Figurt 1.

Table 2. Data utilized in calculating the emigration factor for the Upper Chesapeake Bay American shad estimate, 1980-1997.

2. Pound mets were cor. (ished fingin 1983-84 and 1986-87.

Table 3. The number of American shad caught, marked and recaptured from the Conowingo Dam tailrace and the resultant population estimate, 1982-1997.

			2	
1982	1,846	79	4	29,552
1984	289	96	7	3,516
1985	1,709	151	32	7,876
1986	5,432	256	76	18,134
1987	6.887	319	100	21,823
1988	4,526	221	34	28,714
1989	8,076	253	46	43,650
1990	11,179	286	53	59,420
1991	26,927	377	120	84,122
1992	25,697	342	101	86,416
1993	13,090	245	98	32,529
1994	31,736	429	143	94,770
1995	55,943	556	147	210,546
1996	36,561	398	129	112,217
1997	99,156	554	129	423,324

3. M was adjusted for 3% tag loss.

Table 4. The number of American shad caught, marked and recaptured from the Upper Chesapeake Bay and the resultant population estimate, 1980-1997.

			Nonimber of Fisfí 3×2 Recaptured 	
1980	379	130	8	5,531
1981	604	231	-14	9,357
1982	2,413	335	17	45,061
1983	576	208	9	12.059
1984	414	213	10	8,074
1985	1,836	310	39	14,283
1986	5,532	326	78	22,902
1987	8,019	381	111	27,354
1988	5,585	297	38	42,683
1989	8,953	524	61	75,820
1990	16,664	534	71	123,830
1991	27,991	674	156	121,119
1992	26,253	440	109	105,255
1993	13,995	400	117	47,563
1994.	33,072	598	152	129,482
1995	63,356	1,053	199	333,891
1996	38,838	810	154	203,216
1997	105,678	978	145	708.628

4. M was adjusted for emigration and 3% teg loss.

Table 5. Pearson Product Moment Correlation (rp) for the annual Upper Chesapeake Bay population estimate, annual geometric mean CPUEs for 3 gear types (1980-1996), annual Conowingo tailrace estimate and annual geometric mean CPUEs for 2 gear types (1984-1996) that capture American shad in the Upper Chesapeake Bay ($\mathrm{N}=$ number of

	$\text { 等 } 1 \text { 者 }$	20
	0.86	
\%	13	
	0.0002	
Wkxask		
	0.58	0.56
	13	
	0.0378	0.0456
	0.81	0.77
	16	13
	0.0002	0.0022

Table 6. Pound net CPUE, thook \& line CPUE, Conowingo Dam trap CPUE, total catch at Conowingo Dam,1991-1997.

years).

Table 7. Regression equations and predicted population estimate for the four variables used to back-calculate the population.

Conowingo Dam Tailrace

-		Ha97	
Pound Net GM CPUE	$\begin{aligned} \text { La Pop. Est. }= & 10.6+(0.233 \times \text { Pound Net } \\ & G M \text { CPUE }) \end{aligned}$	10.60	$\begin{gathered} 474,397 \\ (491,906-576,357) \end{gathered}$
Hook \& Line GM CPUE	Ln Pop. Est. $=9.88+(0.255 \times$ Hook \& Line GMCDEE	11.86	$\begin{gathered} 402,037 \\ (394,099-410,136) \end{gathered}$
Conowingo GM CPUE	$\begin{aligned} \text { Ln Pop. Est. }= & 10.6+(0.292 \times \text { Lift GM } \\ & \text { CPUE }) \end{aligned}$	11.28	$\begin{gathered} 1,081,392 \\ (1,033,375-1,131,641) \end{gathered}$
$\begin{aligned} & \text { Total Trap } \\ & \text { Catch } \end{aligned}$	Ln Pop. Est. $=\underset{\text { Catch })}{-1.21}+(1.23 \times \operatorname{Ln}$ Totai	11.42	$\begin{gathered} 375,720 \\ (225,240-626,736) \end{gathered}$

Upper Bay

3 ble	ase	 	
Pound Net GM CPUE	$\begin{aligned} \text { Ln Pop. Est. }= & 10.9+(0.242 \times \text { Pound Net } \\ & G \mathrm{M} \text { CPUE }) \end{aligned}$	10.60	$\begin{gathered} 704,469 \\ (674,759-735,488) \end{gathered}$
Hook \& Line GM CPUE	$\begin{aligned} \text { Ln Pop. Est. }= & 10.3+(0.246 \times \text { Hook \& Line } \\ & \text { GM CPUE }) \end{aligned}$	11.86	$\begin{gathered} 549,938 \\ (539,465-560,613) \end{gathered}$
Conowingo GM CPUE	$\text { La Pop. Est. }=\underset{\text { CPUE })}{7.94}+(1.42 \times \text { Lift GM }$	11.28	$\begin{gathered} 25,389,461,000 \\ (20,357,707,000-31,664,899,000) \end{gathered}$
Total Trap Cateh	Ln Pop. Est $=1.37+(1.06 \times \mathrm{Ln}$ Total Catch $)$	11.42	$\begin{gathered} 711,549 \\ (455,887 \cdot i, 110,588) \end{gathered}$

Figure 1. Pound net, anchor gillnet and Conowingo Dam tailrace sites in the Upper Chesapeake Bay.

Figure 2. Conowingo Dam tailrace Petersen population estimates of American shad, 1984-1997. Bars indicate 95% confidence ranges and numbers above indicate the yearly population estimates.

Figure 3. Upper Chesapeake Bay population estimates of American shad, 1980-1997. Bars indicate 95% confidence ranges and numbers above indicate the yearly population estimate.

Figure 4. Cumulative total catch and number of recapture from Conowingo Dam versus Julian Day, 1995-1997.

Figure 5. Regression analysis of geometric mean catch-per-unit-effort (CPUE) of American shad sampled by pound net, hook and line and Conowingo fish lifts in the Upper Chesapeake Bay, 1980-1997.

Figure 6. Pound net, hook and line, and Conowingo fish lift geometric mean catch-per-unit-effort (CPUE) versus Conowingo Dam tailrace population estimates of American shad, 19801996.

Figure 7. Pound net, hook and line, and Conowingo fish lift geometric mean catch-per-effort (CPUE) versus Upper Chesapeake Bay population estimates of American, 1980-1996.

Figure 8. Conowingo Dam tailrace Schaefer population estimates of American shad, 1988-1996. Bars indicate 95% confidence ranges and numbers above indicate the yearly population estimates.

Figure 9. Upper Chesapeake Bay Schaefer population estimates of American shad, 1982-1996. Bars indicate 95% confidence ranges and numbers above indicate the yearly population estimate.

Attachment C: Stock Status and Definition of Over-Fishing Rate for American shad of the Hudson River Estuary

Kathryn A. Hattala and Andrew W. Kahnle
Hudson River Fisheries Unit
Division of Fish, Wildlife and Marine Resources
New York State Dept. of Environmental Conservation
New Paltz, NY 12561

INTRODUCTION

American shad has waned in its importance as a food fish since the turn of the century, when it was among the top three species harvested on the Atlantic coast (Winslow 1907, US Commission of Fish and Fisheries 1884-1905). Following WWII, most of the major east coast stocks collapsed, faulted primarily to overfishing during the war and the seven to ten year period that followed (Talbot 1954, Figure 1). Other factors contributing to declines were habitat destruction in the form of major dams constructed on spawning rivers with little or no passage, and water quality problems associated with pollution, primarily blocks of low oxygen (Rulifson 1994).

Commercial harvest of American shad continues. However, the once traditional inriver spring fisheries for roe (the eggs are considered a delicacy) have expanded in recent years, to include late winter / early spring fisheries in ocean waters and large coastal bay waters. These fisheries exploit the pre-spawning migration of American shad. These fisheries are relatively small compared to the magnitude of past fisheries, but are an important economic input during a time of continuing restrictions on other, more lucrative, species. More important to note, however, is that these fisheries continue to operate on a much smaller size of stocks present 40 or even 15 years ago.

The last coastwide stock assessment for American shad was completed in 1988 (Gibson et al. 1988). They indicated that even then many stocks were either in depressed or poor condition. Only a few major stocks -- the Hudson, Delaware and Connecticut stocks -- retained some viable status. Since then, the Hudson and Connecticut stocks have experienced noted declines (Hattala 1995, Crecco 1995). The Delaware stock appears to be stable, yet is beginning to show subtle changes (smaller fish size, lack of bigger, older fish) (R. Snyder, personal communication). These changes are similar to those exhibited by the Hudson stock in the mid 1980's.

Much discussion has occurred in recent years debating the cause of declines in the Hudson and other systems. The need for an updated assessment is evident. However, the debate now centers on inputs, methods and assumptions to be used. At the forefront of the debate is the appropriate level of natural mortality (M) to use for American shad. Both age invariant and age
specific rates have been used in recent assessments (Crecco 1997, Deriso 1995, and Gibson et al. 1988).

In this paper, we present an assessment of status of the Hudson River stock of American shad, a sensitivity analysis and discussion of natural mortality rates, and definition of overfishing.

OBJECTIVES

The objectives of this paper are:
S a thorough assessment of the current condition of the Hudson River American shad stock, and

S selection of a fishing rate for use as an overfishing definition.

STOCK STATUS

Study Area

The Hudson River is a tidal estuary which extends 246 km north of the Battery in New York City to the Federal Dam at Troy (Figure 2). The shoals and shallow water areas in the upper half of the estuary above Kingston (km 144) are used as spawning habitat. The nursery area encompasses this area extending south to Newburgh Bay (km 90).

History of the Hudson River American shad stock

Landings of Hudson River shad suggest that the stock has undergone two dramatic declines in the past 100 years (Figure 3, Table B1). Both declines are attributed to overfishing. The first event occurred at the turn of the century, the second after World War II. Walters (1995) suggested that the population has not fully recovered from the second event. Recent landings of American shad are at an all time low.

During the years following WWII, pollution, primarily in the form of sewage, became a common occurrence. Inadequate oxygen (oxygen blocks) occurred in some sections of the river. The best known block was present in the Albany pool, located in the northern section of shad spawning and nursery habitat. Much spawning and nursery habitat was also lost in the upper half of the tidal Hudson due to dredge and fill operations to maintain the river's shipping channel to Albany. Recent work is in progress to attempt to quantify the amount of habitat loss that occurred (C. Needer and J. Ladd, Hudson River National Estuarine Research Reserve, personal communication). Preliminary estimates are that approximately one third of the shallow water habitat north of Hudson (km 190) was lost to filling.

Fishing effort in the Hudson River, in number of licenses and amount of licensed net sold, grew through the early 1980's, peaking in 1984. Effort declined after that but remained
relatively stable from 1985 through 1990 (Figure 4, Table B2). Since then, effort has started to decline as fish become increasingly scarce and fishing becomes a non-profitable venture. Concern for status of the stock by Hudson River Valley commercial fishermen is noticeably high.

Stock Characteristics

The Hudson River Fisheries Unit conducts annual programs to assess the status of the Hudson River American shad stock. Fishery dependent and independent programs sample biological characteristics of mature fish returning to spawn. Relative abundance of shad is tracked through the catch/effort (c/f) statistics of fish taken during the commercial gillnet fishery in the Estuary. The spawning stock (mature fish) that escapes this fishery is sampled for age, length, weight and sex composition. Mortality rates are calculated for this portion of the stock. The success of the spawn is measured by abundance data for age zero fish.

Fishery Dependent Programs

The current commercial fishery for American shad in New York State occurs in the Hudson River Estuary and in marine waters around Long Island. A recreational fishery occurs in the upper half of the estuary, but the magnitude is unknown. A preliminary creel survey conducted this spring (1997) may provide insight on the recreational fishery. Commercial and recreational fishing restrictions are listed in Appendix A.

Commercial Landings and License Reporting

The National Marine Fisheries Service (NMFS) reported landings annually for the Hudson River up until 1993. Landings from 1994 to the present are from mandatory state catch reports for Hudson River commercial fishing licensee's. Recording of effort data was phased in on reporting forms beginning in 1991. Full compliance for reporting of fishing effort was implemented in 1997. The commercial monitoring data (see next section) is used to verify and adjust reporting rate for the mandatory reports.

Commercial Monitoring Program

Relative abundance of shad is tracked through catch/effort (c/f) statistics of fish taken during the commercial gillnet fishery in the Estuary.

The commercial gillnet fishery exploits the spawning migration of American shad in the Hudson River Estuary. The fishery targets female shad for their roe, however most captured males are kept for fillets and/or smoking. Fishing usually begins in early April and, continues until May when fish come into full spawning condition. Fishing activity in New York waters of the Hudson occurs by fixed gear from km 40 to km 70 (Piermont to Peekskill) and drifted gear from km 98 to km 182 (Newburgh Bay to Catskill). One small stake gill net operation exists in the New Jersey portion of the Hudson River near km 19 (George Washington Bridge).

We have monitored the commercial fishery annually since 1980. Information is obtained by direct observation. Data are recorded on numbers of fish caught, gear type and size, fishing time and location. Scale samples, lengths and weights are taken from a subsample of the fishermen's catch. C/f is calculated as the number of fish collected per $\mathrm{yd}^{2} \mathrm{x}$ hrs $\times 10^{-3}$ of net fished. C/f data is summarized as an annual sum of weekly c/f. Run size is determined by number (density) of spawners each week as well as duration (number of weeks) of the run. Scales from 1988 through 1997 (except 1991) have not been aged, but should be available some time in 1998.

C/f for female American shad was low in the early 1980's increased to a high in 1986, declined through 1993 then varied through 1997 (Figure 5, Table B3). It is unclear how the increase in the 1994 and 1996 indices relates to low landings during this period (Figure 2). Perhaps catchability increased as stock size declined (Crecco and Savoy 1985). If landings reasonably represent stock size, this may be what occurred in these years. C/f data from 1993 through 1996 should be interpreted with caution as sample size was lower than in previous years. Male c/f followed the same pattern as females, however, after 1990 it has remained extremely low.

Mean fork length (FL) and weight of female American shad declined over the period 1987 to 1992 and has remained low since then. The current average size of females is the smallest observed since 1980 (Figure 6, Table B4). A similar pattern occurred for males.

Fishery Independent

Spawning Stock Survey

The fish sampled in this program represents the spawning stock, or production, portion of the population that has escaped the commercial fishery. Mortality rates are calculated for this portion of the stock.

The spawning stock has been sampled annually since 1983. Sampling occurs within the spawning reach (km 145-232) from late April through early June, concentrated from km 146 to km 182. Fish are collected by a 183 m or 304 m haul seine, selected because of its relative low size selectivity. Sampling efforts in 1983 and 1984 were very limited. The most useful age data are from 1985 to the present. All shad collected are identified by sex, weighed, measured, and sampled for scales. Scales from 1988 through 1997 (except 1991) have not been aged, but should be available some time in 1998.

Mean fork length and weight for both sexes remained steady until 1988 but have slowly declined since then. The smallest fish were observed in 1994 when sizes of both sexes were at the lowest level observed since the program began (Figure 7, Table B4). Mean fork length and weight increased slightly in 1995 and 1996.

Age structure of the spawning stock remained stable in the 1980's (Table 1). The most recent data in 1991 indicated a change to younger fish. Incidence of repeat spawning also dropped in 1991 to 28% from an average of 56% for females and to 21% from 46% for males (Table 1).

We investigated the influence of year-class strength and its effect on mean age since the decline in mean age could have been caused by strong year classes of young fish in 1991. Effects of year class strength were removed from age structure by dividing catch at age by year class strength of the same cohort. Adjusted mean age declined in 1991 (Figure 8, Table 1). This indicates that the change to younger fish in 1991 was caused by a loss of older fish rather than an influx of younger fish.

Mortality Estimates

Total instantaneous mortality (Z) is calculated using within-year catch curve on ages and number of repeat spawners (Crecco and Gibson 1988). The most recent estimates of total instantaneous mortality (Z) calculated from 1991 spawning stock age data were $\mathrm{Z}_{\mathrm{AGE}}=0.98$ and $\mathrm{Z}_{\mathrm{SM}}=0.99$ ($\mathrm{SM}=$ spawning marks) for males and $\mathrm{Z}_{\mathrm{AGE}}=0.97$ and $\mathrm{Z}_{\mathrm{SM}}=0.74$ for females (Table 2) . This is an increase from the Z's calculated for 1985-1987 when $Z_{A G E}=0.69$ and $Z_{S M}=0.56$ for males and $\mathrm{Z}_{\mathrm{AGE}}=0.57$ and $\mathrm{Z}_{\mathrm{SM}}=0.50$ for females.

Young-of-the-Year Abundance

A measure of relative abundance of young-of-the-year (YOY) American shad has been obtained annually in the Hudson River Estuary since 1980. Sampling is concentrated in the middle and upper portions of the Estuary (km 88-225), the major nursery area for young alosids. Sampling is conducted biweekly from mid-June through late October each year. Gear is a 100 ft . beach seine, sampled during the day at approximately 30 standard sites.

Catch / effort is expressed as an annual geometric mean: number of fish per seine haul for weeks 26 through 42 (July through October). C/f indices were low through the early 1980's then increased greatly in 1986 (Figure 9, Table B5). Annual measures have been extremely variable but follow a declining trend until 1995. It is not clear why the index in 1996 was so high.

In addition to the young-of-the-year index, additional data on year class abundance data are available. These data are abundance of post-yolk-sac larval shad (PYSL), collected by Hudson River valley utility companies Long River Survey (LRS). The LRS samples ichthyoplankton river-wide from the G. Washington Bridge (km 19) to Troy (km 246) following a
stratified random design (CONED 1997). Ichthyoplankton is sampled from all strata (shore, shoals, bottom and channel). Gears used are a 1-m epibenthic sled or a 1-m Tucker trawl. The PYSL index is the density of fish collected per $1000 \mathrm{~m}^{3}$ of water sampled.

The two indices, YOY and PYSL, correlate well $\left(\mathrm{R}^{2}=0.8\right)$. The PYSL index has a longer time series back to 1974. The indices in 1974 through 1979 were much lower than that measured after 1980. Since 1980, trends in the two indices track well for all years except 1996. The 1996 indices are still preliminary and the relationship between the two indices may change once the data are finalized.

OVERFISHING DEFINITION

We decided to use an F_{30} as the overfishing definition for the Hudson River American shad stock. $\quad \mathrm{F}_{30}$ is defined as the fishing rate that would generate stock size of 30% of the unfished (virgin) stock. This is the same criterion used by Crecco (1997) and as selected by the Shad Stock Assessment Subcommittee of the Atlantic States Marine Fisheries Commission.

Methods

Model inputs by age are listed in Table 3 and Figure 10. All data are specific to the Hudson River stock.

Our analyses augment a basic yield and biomass-per-recruit (BPR) model for females with estimates of egg production for information on egg-per-recruit (EPR). Our model starts with recruits at age one. These recruits are decremented annually by natural mortality until they reach harvestable ages. They are then decremented by natural and fishing mortality through age 12. As survivors mature, the fraction of females of each age that is mature is multiplied by fecundity at that age. Resulting egg production and biomass by age is summed for all ages. In the final step, total egg production and total biomass are each divided by the number of initial recruits for an estimate of EPR and BPR. The model was run for a range of fishing rates (F) from zero to 0.7. Formulae used in model calculations are summarized in Appendix C.

Selection of Instantaneous Rate of Natural Mortality

The appropriate level of natural mortality (M) for American shad remains unresolved. Crecco (1997) used several values for M , based on age groups. These values are $\mathrm{M}=0.3$ for ages 1-3 (all stocks), $\mathrm{M}=2.5$ for ages $4-10$ in southern rivers and $\mathrm{M}=1.5$ for ages $4-10$ in most northern rivers. The exception for northern rivers was the Hudson, where a value of 0.6 for ages $4-10$ was used. Gibson et al. (1988) used age invariant (constant), river-specific M's, calculated using a variety of methods (Hoenig 1983, Pauly 1980 or Leggett 1976). Deriso et al. (1995) used a age invariant rate of 0.3 for Hudson River American shad. The value of 0.35 was estimated using Hoenig (1983) from the most commonly observed maximum age of 12 years for the Hudson stock.

Given that immature American shad and other herring are forage for many fish predators, it is likely that M is not age invariant and is higher at young ages. We used a method by Boudreau and Dickie (1989) and Dickie (1987) to estimate M at age for Hudson River shad. These methods relate M to a specific rate of production (biomass) for each size group (age) in a population. The curve generated over all size (age) groups is an indication of the natural mortality pattern of a stock (Table 3).

Since M remains unknown, we also included a sensitivity analysis of M. The model was run using a variety of M's: constant, age-invariant values from 0.2 to 1.4 and age dependent values which increased or decreased with age.

Given the stress of spawning experienced by American shad (movement from fresh to saltwater, no food consumption while spawning) and the lengthy exposure to a fishery (late February to May), we used a Type II fishery where both natural and fishing mortality are occurring simultaneously.

Results

Overfishing Rate

The response of EPR and BPR to changes in F varied with type and level of M that was input to the model. Highest values were produced by lowest values of age invariant M (Figure 11) and age specific M that decreased with age (Figure 12).

For a constant, age-invariant M , the F_{30} increased with increasing M (Table 4). Values ranged from $\mathrm{F}_{30}=0.22(\mathrm{EPR})$ when $\mathrm{M}=0.2$, and $\mathrm{F}_{30}=0.65$ for $\mathrm{M}=1.4$. Estimates of F_{30}, based on BPR, were similar and ranged from 0.24 for $\mathrm{M}=0.2$ and 0.69 for $\mathrm{M}=1.4$.

For age-specific M , where M declined with age, $\mathrm{F}_{30}=0.23(\mathrm{EPR})$ and $\mathrm{F}_{30}=0.25(\mathrm{BPR})$ (Table 4). Where M was higher for mature fish (>3 age group), $\mathrm{F}_{30}=0.38$ (BPR) for $\mathrm{M}=0.6$ and $\mathrm{F}_{30}=0.68(\mathrm{BPR})$ for $\mathrm{M}=1.5$ (Table 4).

For the purposes of this assessment we recommend that either an age invariant M of 0.3 or an age specific M which decreased with age should be used. These result in estimates of an overfishing rate of $\mathrm{F}=0.23$ to $\mathrm{F}=0.27$ (Table 4).

Current F

Deriso (1995) found fishing mortality rates (F) for older shad of 0.4 to 0.5 for the period 1974 to 1992, with rates higher for female shad and than for males. Average exploitation was $0.33(\mathrm{~F}=0.4)$ for the same period.

Given that $\mathrm{Z}=\mathrm{M}+\mathrm{F}$, estimates of Z (Section 3.3.2) and assumed values of M can be used to generate estimates of F . Using the age invariant estimate of $\mathrm{M}=0.30$, estimates of mean F for females in 1985 to 1987 were 0.25 using age data and 0.20 using spawning marks. The 1991 estimates were 0.67 and 0.44 respectively. Using a mean M for the mature ages (0.20) for the age specific M, estimates of mean F for females in 1985 to 1987 were 0.35 and 0.30. The 1991 estimates were 0.77 and 0.54 .

Estimates of F reported by Deriso (1995) and those generated from recent estimates of Z above exceed all estimates of overfishing calculated in this analyses (Figure 13).

Estimates of F also could be generated from reported harvest and estimates of population. We are currently analyzing tag release and recapture data for 1995 through 1997 with the intent of generating inriver estimates of spawning stock size. Estimates of u and then F will be generated when the population estimates are complete. However, it is very important to note that estimates of harvest rate using reported harvest is very much affected by the assumed reporting rate. A doubling of reported harvest doubles any estimate of u.

Discussion

Models and analyses presented in this paper were developed to provide New York with an approach to assessing status of American shad of the Hudson River Estuary. We used the simple EPR and BPR approach for identifying overfishing levels of F because we felt that data were not adequate for including any stock recruit relationship (S/R). We explored data on relative abundance of stock and recruits for 1974 through 1996 provided by Crecco (1997 January stock assessment draft). However, the fit was poor and estimates describing density dependence were unrealistically high, $\mathrm{b}>4.0$. Moreover, we were reluctant to use such a short time series of data into a S / R function - especially since the 20 year time series essentially spans a period of low stock size.

The choice of a value for M is very important to all modeling work on American shad. Mortality rates of fishes, as well as all animals, are inversely related to longevity. American shad, with no repeat spawning, such as southern stocks clearly have a higher natural mortality rate than those that repeat. Most southern stocks seldom exceed a maximum age of 7. In most northern stocks, in NC and north, with repeat spawning, maximum age falls within the range of 8 to 11 (Markham 1997, O’Reilly 1997, Winslow 1997) with the exception of the Hudson River. Model runs, with selected M, that generate the virgin stock size benchmark, should, at minimum, approximate ages observed in the wild populations. If they do not, then virgin stock size can be underestimated (no egg production or biomass at older ages) as older ages that should be there, are not present.

Maximum age of Hudson shad most often equals 12, but a few fish have been observed at age 13. These older ages in the Hudson stock suggest M should be fairly low to reflect the stock's longevity. It is not clear how old shad can get since current data, collected within the last 15 years, reflect conditions present in shad populations at low stock size and the effects of F .

For comparative value, many other fish stocks have similar natural mortality rates. Age invariant M has been the choice of most assessments. For top end predators, natural mortality is fairly low: striped bass, $\mathrm{M}=0.2$; weakfish, $\mathrm{M}=0.3$ (ASMFC). Shad, however, fall into the prey species category at younger ages until they grow large enough to avoid being food. For a similar prey-type, though non-anadromous, clupeid species, Atlantic herring, the value selected for M is 0.2 (SAW 1996). For another anadromous species, Atlantic salmon, the value of $\mathrm{M}=0.12$ is used (Freidland et al. 1996).

We feel that changes observed in the Hudson River American shad stock are a result of overfishing. We base our conclusion on observed changes in size and age structure and on recent rates of mortality relative to acceptable levels.

Size and mean age decreased in 1991 relative to that in 1984-1987. These changes could be caused by changes in year class production resulting in more young fish or in decreased survival of older fish. Increased fishing is the logical cause of any increase in mortality. We tested effects of year class fluctuation on age structure by normalizing catch at age data by relative abundance of the same cohort at age zero. Resulting mean age (Table 1) continued to be lower in the most recent data suggesting that change was caused by actual losses of older fish rather than on year class fluctuation.

The most recent estimate of Z (1991) is higher than those observed in 1985-1987 and result in F values that exceed our overfishing definition at most reasonable values of M . The possible weakness in our Z estimates is that estimates are based on age composition generated from scale samples. Aging of scales remains an art and estimates have not been verified by known age fish. However, the same staff and methods have been used to age shad for the entire time period. Thus any bias should be consistent. The reduction in average age lead to increased mortality estimates regardless of size of bias. Our estimates of current Z and F are close to those generated by Deriso. (1995) by a stock reconstruction analyses.

LITERATURE CITED

Boudreau, P. R. and L. M. Dickie. 1989. Biological modeling of fisheries production based on physiology and ecological scalings of body size. Can. J. Fish. Aquat. Sci. 46: 614623.

CONED (Consolidated Edison) 1997. Year Class Report for the Hudson River Estuary Monitoring Program 1997. New York, NY USA.

Crecco, V. 1995. Status of American shad in the Connecticut River, 1970-1995. Report to the shad and river herring Technical Committee of the Atlantic States Marine Fisheries Commission, Washington, D.C. USA.

Crecco, V. 1997. DRAFT Stock assessment of American shad from selected Atlantic coast rivers. Report to the American shad stock assessment Subcommittee of the Atlantic States Marine Fisheries Commission. Washington, D.C. USA.

Crecco, V. and M. Gibson. 1988. Methods of estimating fishing mortality rates on American shad stocks. In 1988 Supplement to the American shad and river herring Management Plan, Fisheries Management Report No. 12 of the Atlantic States Marine Fisheries Commission, Washington, D.C. USA.

Crecco, V. and T. Savoy. 1985. Density dependent catchability and its potential causes and consequences on Connecticut River shad, Alosa sapidissima. Can. J. Fish. Aquat. Sci. 42(10):1649-1657.

Dickie, L. M., S. R. Kerr, and P. Scwinghamer. 1987. An ecological approach to fisheries assessment. Can J. Fish. Aquat. Sci. 44(Suppl. 2) 68-74

Deriso, R. (with assistance from K. Hattala and A. Kahnle). 1995. Hudson River assessment and equilibrium calculations: extension of assessment to include repeat spawning information and sex specific attributes. ESSA Technologies, Ltd. for the NY State Dept. of Environmental Conservation. Canada. (Unpublished).

Freidland, K. D., R. E. Haas and T. F. Sheehan. 1996. Comparative post smolt growth, maturation and survival in two stocks of Atlantic salmon. Fishery Bulletin 94:6546663.

Gibson, M., V. Crecco and D. Stang. 1988. Stock assessment of American shad from selected Atlantic coast rivers. Special report \#15 of the Atlantic States Marine Fisheries Commission, Washington, D. C. USA.

Hattala, K. 1995. Stock status of American shad in the Hudson River Estuary. Report to the shad and river herring Technical Committee of the Atlantic states Marine Fisheries Commission, Washington, D. C. USA.

Hoenig, J. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 82(1):898-903.

Leggett, W. C. 1976. The American shad. Alosa sapidissima, with special reference to its migrations and population dynamics in the Connecticut River. In Merrriman and Thorpe, editors, The Connecticut River Ecological Study: The impact of a nuclear power plant. American Fisheries Soc. Monograph 1.

Lehman, B. 1953. Fecundity of Hudson River shad. US Fish and Wildlife Service, research report 33.

Markham, C. 1997. Memo to Atlantic States Marine Fisheries Commission shad and river herring Technical and stock assessment committees on age structure and estimates of Z for the Upper Chesapeake Bay.

O'Reilly, R. 1997. Memo to Atlantic States Marine Fisheries Commission shad and river herring stock assessment committees on harvest and age structure for some Virginia Rivers.

Pauley, D. 1980. On the inter-relationship between natural mortality, growth parameters , and mean environmental temperature in 175 fish stocks. J. Cons. Explor. Mer. 39:175-192.

Rulfson, R. 1994. Status of anadromous Alsosa along the east coast of North American Anadromous Alsoa Symposium, 1994, pp. 134-158.

SAW 1996. $21^{\text {st }}$ Northeast Regional stock assessment workshop, Northeast Fisheries Science Center Reference document 96-05d.

Talbot, G. 1954. Factors associated with fluctuations in abundance of Hudson River shad. US Fishery Bulletin 101.

Walters, C. 1995. Estimation of historical stock size and recruitment anomalies from relative abundance time series. Can. J. Fish. Aquat. Sci. 52:1523-1534.

Winslow 1997. US Bureau of Fisheries. 1907. Statistics of the fisheries of the Middle Atlantic States for 1904. Report of Comm. of Fisheries for 1905. Appendix (Doc. 609).

US Commission of Fish and Fisheries. 1884-1905. Reports of the Commissioner, 1882-1905.

Figure 1. Total commercial fishery landings of American shad for all Atlantic coast states: ME to FL, 1880-1995.

Figure 2. The Hudson River Estuary.

Figure 3. Historic commercial fishery landings of American shad in the Hudson River Estuary, 1880-1996.

Figure 4. Number of shad licenses and amount (ft) of licensed gillnet sold for the Hudson River, 1976-1996.

Figure 5. Weekly sum of c/f of American shad caught in fixed gillnets in the commercial gillnet fishery in the Hudson River Estuary, 1980-1997.

Figure 6. Mean fork length and weight of American shad caught in the commercial gillnet fishery in the Hudson River Estuary.

Figure 7. Mean fork length and weight of American shad collected in the spawning stock survey in the Hudson River Estuary.

Figure 8. Mean age and mean adjusted age of American shad collected in the spawning stock survey in the Hudson River Estuary.

Figure 9. Young-of-the-year and post-yolk-sac indices of abundance for American shad collected in the Hudson River Estuary. ***1996 estimates are PRELIMINARY

Figure 10. Observed weight at age for Hudson River American shad.

Figure 11. Comparison of model results of EPR and BPR run at various levels of age invariant M. 200

Blomass per recruit v. age invariant M

Figure 12. Comparison of model results of EPR and BPR run using age dependent M (See Table $3)$.

Figure 13. Comparison of observed fishing mortality rates v. selected overfishing rates.

Table 1. Age structure, mean age and adjusted age of American shad collected in the spawning stock survey in the Hudson River Estuary.

Table 2. Estimates of total instantaneous mortality (Z) and annual survival of American shad collected in the spawning stock survey in the Hudson River Estuary.

Year	Aghes	age 7	SE	$\mathrm{R}^{\text {Na }}$	S	Catch curve Spawning Marks	Z	SE	R ${ }^{\text {2 }}$	S
Spawning Stock - Malos										
	5-10	0.79	0.06	0.98	0.45	1.5	0.62	0.05	0.97	0.54
1586	4-9	0.70	0.07	0.96	0.50	1-4	0.48	0.14	0.86	0.51
4987	5-11	0.60	0.05	0.86	0.55	16	0.56	0.06	0.95	0.57
avg:85-87		0.70					0.56			
1091	4.8	0.98	0.14	0.94	0.38	1-4.	0.99	0.25	0.88	0.37
Spawaing Stock - Females										
1985	6-11	0.46	0.04	0.97	0.63	1-5	0.36	0.09	0.83	0.70
1886	6-11	0.63	0.12	0.86	0.53	1.7	0.63	0.10	0.89	0.53
1567	5-13	0.56	0.06	0.92	0.57	1-7	0.51	0.06	0.92	0.60
avg $185-87$		0.55					0.50			
1991	$6+10$	0.97	0.15	0.93	0.38	1-5	0.74	0.10	0.04	0.48
Spwwing tock - all										
1985	$5-11$	0.55	0.03	0.98	0.58	1.5	0.47	0.08	0.92	0.63
1986	6-11	0.67	0.10	0.89	0.51	1-7	0.79	0.10	0.81	0.45
1987	5-13	0.61	0.03	0.99	0.54	$1-7$	0.59	0.04	0.98	0.55
avg $265-87$		0.61					0.62			
1891	6-10	0.98	0.11	0.85	0.38	1-5	0.87	0.52	0.88	0.42

Table 3. Inputs to the yield model for Hudson River American shad

[^0]Table 4. Sensitivity of F_{30} to changes in M, based on Egg (EPR) or Biomass (BPR) per recruit.

Type of model run.	M	F30.	
		EPR	BPR
Age invariaint			
	0.2	0.22	0.24
	0.3	0.25	0.27
	0.4	0.88	0.30
	0.6	0.35	0.38
	0.8	0.42	0.45
	1.0	0.49	0.53
	1.2	0.57	0.60
	1.4	0.65	0.69
Age specific	(Seet Tabler)	0.23	0.25
Age groups			
Ages 1-3	0.3	0.35	0.38
Ages >3	0.6		
Ages 1-3	0.3	0.65	0.68
Ages >3	1.5		

Appendix A

Fishery Restrictions for American shad in New York waters

Commercial Harvest:
Hudson River Estuary*: G. Washington Bridge north to Troy Dam (Rivermile 12-152)

- season: 15 March through 15 June
- 36 hour escapement period
- net size restriction: limit of 1200 ft ; mesh size restriction: mesh > than 5 in stretch mesh)
- net deployment restrictions (distance between fishing gear > 1500 ft)
- area restrictions (drifted gears allowed in certain portions of the river)
- area closures (no fishing in a portion of the spawning area)

Marine Waters: G. Washington Bridge south, including waters around Long Island - none

Delaware River: NY portion, north of Port Jervis

- no commercial fishery exists in this portion; no rules prohibiting it

Recreational Harvest:

- statewide for Inland waters: bag limit of 6 fish per day
- NO season

Appendix B

Hudson River American shad data tables

Table B1. Historic conmercial fishery landings of American shad in the Hudson River Estuary.

Table B2. Number of shad licenses and amount (ft) of licensed gillnet sold for the Hudson River, 1976-1996.

Year	Number of shar licenses soid	Arrount of gill net licensed (ft)
1976	74	121700
1977	94	138300
1978	43	65350
1979	98	160933
1980	117	238479
1981	109	219890
1982	143	270740
1983	142	272990
1984	175	389960
1985	150	316800
1986	112	214120
1987	191	179000
1988	94	189400
1989	91	180280
1990	96	252200
1991	79	166290
1992	74	166988
1993	55	149150
1994	49	14600
1995		54

Table B3．Annual summary of observed catch－per－unit－effort of American shad in the commercial gill fishery in the Hudson River Estuary．

Fiales		Annual mombly CA	FIXED	AR									
Year	number of thige	Weet of Year 13.14	45	16	17	18	18	20	21	22	23	SUN	
1950	26		1.20	2.17	0.47	0.13	0.07	0.35	0.10				4.28
1909	24	0.64	3.42	$0 \mathrm{B7}$	0.50	0.07	0.08	0.47	0.06				6.16
1982	37	－	a．2t	1.45	0.85	044		0.07					3 ca
1983	34		T． 70	0.48	221	085	0.48						5.96
1914	57	0.00	0.60	0.24	1.40	4.84	0.08	0．0n					3.43
1935	54	2．14	5．35	1.44	0.77		0.17	0.79					10．Es
18＊＊	49	8．8日 5．30	7.37	173	0.41	0.05	0.57	0.23					24.53
1087	49	4.62	3.08	3.24	0.96	0.27	0.35						13.00
10ロ0	38	3.73	8.14	4.11	2.57	0.60	0.55						19.41
19890	50	1.95	4． 15	3.35	2.61	1.19							0.30
1890	23	1.37	1.50	020	0.40								3.68
1764	22	0.00	0.77	0.50	0.08	0.08							233
1tanz	33	0.13	0.48	0.27	0.39	0.12							1.31
10970	8			$\square .73$	0.18								0.02
$1604 *$	\bullet			0.65	0.13	0.07							0.86
1905＊	14		0.61	0.68	013								1.40
19007＊	19		0.38	1.02	0.50	0.18	0.15						218
7e07	\％		0.20	D．3I，	$0=10$	0.10							0.81
Fermetes	Totat nomber ofripx	Annuat wasekh cht＋FXED GEAR											
Ypar													
												\therefore ．	
1880			3.38	1．90	4.38	1．27	1．03	$\begin{aligned} & 0.83 \\ & 0.71 \end{aligned}$					18.11
－1980	24	6.68	0.58	2．08	6.45 2.37	3.08	1.03	0．76					6．01
14as	77		5．15	0．84	2.67	1.83	2.67						9.18
1984	57	0.00	0.02	0.52	3.19	4.85	0.72	0.18					9.48
14＋45	54	228	5.91	4.80	6.39		1.22	4.87	D． 06				2eds
t989	49	7.62 7．68	0．83	7.59	7.86	2.55	＊． 50	1．61					52.6
4tar	40	11．81	9．96	14.87	5.91	3．98	3.43						47.35
［1080	38	\＄．74	11.59	6．77	16.34	5.77	3.89						42.20
110＊＊	310	0.08	1.36	7．51	11.84	12.22							38.70
1780	23	20\％	4.58	3.95	4．${ }^{\text {a }}$								16.2
1804	22	© ${ }^{1}$	4.14	4.61	1.83	1.77							14，80
15042	33	7．10	276	2． H^{4}	6.59	1.50							12．90
1093＊	穴			16．5．5	4．47	0.64	0.84						124．05
1809＊＊	10		$4 . \mathrm{BS}$	16．6\％	2.35								14．44
	＊＊		248	\＄． 21	5.38	4.43	3.04						24，20
4947	28		10	2.43	1．${ }^{\text {\％}}$	0．7．7							7.10

b．Cetth per mill eloot

Table B4．Mean fork length and weight of American shad collected in the Hudson River Estuary．

Malls												
1380	159	d54．6	24.0	170	1672.5	26 cat						
1984，	231	452， 3	73－4	223	1313垄	2544						
1987	185	4P2s	20.4	172	1776.2	20\％\％					－	
196	10	$4 \mathrm{TH.4}$	30.0	152	1154 1	345.1	20	461.3	29.4	20	18930	290.4
Trist	139	470.2	39.1	195	1631.3	408.2	17	452.7	40.5	\％	1425.7	250．9
1285	117	473.6	20.3	175	16.45	3065	184	435.7	43.0	14］	1174.3	470.2
！ 905.	154	4 Fa ．	30.5	45	1917．${ }^{\text {c }}$	413.4	416	435.2	41.2	353	1295.1	366.7
1989．	71	498.4	25.2	71	2res	332.5	279	442.5	41.4	\％he	1285.9	366．A
19	116	4751	24.2	148	1494：	ses．s	227	446.1	2． 0	215	137＊6	1e9s．
1960	12	4 36.2	24．8	174	2042.5	3 Fr	162	240．＊	41.3	162	1245.8	410.6
1900	40	480.5	37.3	49	19015	492．	39	424.1	43.1	36	1047.1	347.6
1004	7	405． 6	35.5	27	1192	4020	113	205\％	32.3	11	074 \square^{1}	721．8
1800	143	437.3	25.8	136	14518	sacti	691	400，＊	25.4	$8{ }^{4}$	tese	2136
1800	3	460.7	27，	35	1606.4	296.3	310	405.2	24.3	318	rape	180．2
1909	15	457.7	17.4	b	15723	215	60	492.8	27.1	87	H09．1	
1005	113	459.7	20.1	34	16705	t0\％	267	413.7	31.1	200	Pere	249.1
1006	［3］	4804	20.1	408	1927．4	274．	295	46917	22.4	258	teres	438.5
（ratumen												
1900	274 58	$\begin{aligned} & \text { 4. in i } \\ & 420.8 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 26.8 \end{aligned}$	272	21913							
14010	$\begin{aligned} & 570 \\ & 444 \end{aligned}$	492.8	26.8 50.1	$\begin{aligned} & 50 \\ & 420 \end{aligned}$	$\begin{aligned} & 2005.4 \\ & 23074 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 4 \$ 0.1 \end{aligned}$						
12085	307	S925	30.1		2300.1	506.1						
1930，	451	911.5	31	411	25070	5118	41	520.7	23.4	E1	2361．4	5410
1980	474	somil	36.1	473	46423	5048	105	511.1	41.7	Tt	20845	629.1
1906；	479	518.9	342	476	26352	5720	2AF	5042	38.3	27	7000，1．．	5412.4
1第管	479	5＊＊S	51	46		650．7	207	50.5	40.7	27	1846.4	50．6．4
1tees	251	515.0	\＄0．4	285	29742	5180	314	S054	38.1	30 ab	20atel	525.0
19091	327	512.4	10．8	－ 309	2502：	484.7	fan	5003	36.5	115	$1{ }^{109}$	8418
140．	223	515.9	36.7	223	2530.7	558	48	4事：	40．8	6）	18.80 .7	tenst
1091	128	5	34.1	\％ 31	23085	489.4	104	471.5	33.1 30.4	100	5607.1	S358
109\％	184	41.15	29.7	\＄1	193．15	300.4	144	4535	30．4	138	1479.7 1179.	370.1 2648
1tion．	141	47 LI	24.4.	＊4	1790．s	3072	4	4515	23.8	8	1244．0	200， 3
1 ms	14s	480.2	24.0	107	19897	2788	464	4tter	23.4	451	cter $\frac{1}{}$	508.7
1000	358	471.4	36.1	35	19502	347.5	121	4684	37.4	125	1547.1	805， 3
（1ELPES												
700	59	47.1	27.1	5	1918．							
4651	Him	409	30.1	004	181938	41915						
1732	［5］	Hos．	502	408	71858					\％	（49000	
1930	5	483.1	378	5	214Ra	STOE	140	40016	52.1	1×8	1814\％ C	c3：3
4ees	592	80012	37.4	503	2xala	dinct	站	$4{ }^{2} 27$	SAI	2 5	（46tel	445.5
19010	41	59	378	$4{ }^{4}$	25델	Ev1．1	707	4 cta	529	650	150\％ 5	565.1
197	49	［27 1	35.	8	2514．a	casin	594	474.1	\＄1，7	59	18454	560．1
1940：	378	sors	975	971	2900	4	547	4 H005	45.0	S20	4742.1	5621
4800	15	504	30\％	ars	21312	481	971	472	497	570	4501.	491.4
1780	263	5608	781	203	24813	©973	明	4506	527	88	2385．	512.8
19＊）	358	－7\％3	340	24	Prit	464	23	4358	46.2	228	414．46	402．4
134	500	4750	718	$6{ }^{1}$	18498		1497	4221		1288	7070.5	3812
4908	104	4898	350	1－9	180cis	＋03．4	487	44.48	34.2	400	817． 8	273.1
1404	120	478．7	248	12	1 1493\％	368	104	424．5	341	172	5061.2 12792	281.5 368.0
17＊｜	41 궁	475，4	30.1	416	1－3\％	3878	471	471.5	453	413	109．85	5474

Table B5. Young of the year indices of Hudson River American shad.

Year	Number as hauls	Number	YOY* Gerometric Mean	S0	SE	Tera hauls	$\begin{aligned} & \hline \text { PYSL"* } \\ & \text { Utildies } \\ & \text { (dersity) } \\ & \hline \end{aligned}$
1974							-0.17
1975							0.28
1976							0.15
1977							0.17
1978							0.09
1979							0.49
1980	20	1071	23.9	28	0.34	0	0.48
1981	21	1098	19,1	4.5	0.45	3	0.78
1982	23	583	12.2	3.3	0.35	3	0.59
1983	133	5289	182	2.8	0.12	4	0.57
1984	124	2030	7.8	2.5	0.12	13	0.38
1985	177	10576	26.5	3.0	0.11	10	0.67
1956	186	14321	46.3	2.2	0.08.	4	1.05
1987	95	3 32	202	2.5	0.14	7	0.18
1988	192	14089	27.6	3.6	0.12	10	0.73
1989	212	19601	47.3	2.4	0.08	3	1.04
1990	202	16501	412	2.5	0.09	7	1.17
4991	240	1505	24.4	3.8	0.11	17	0.32
1992	245	\$8403	35.2	32	0.10	14	0.62
'1993	205	5107	11.5	2.8	0.10	21	0.23
1994	217	9363	26.1	2.0	0.08	1	0.37
1995	238	3884	6.7	3.1	0.10	56	0.20
1996***	189	14594	30.9	2.8		g	0.25

Table B6. Weight at age for Hudson River American shad estimated using Gompertz Growth Function.

fermales		$\begin{gathered} \left(W^{*}\left(E X P\left\{G^{-}\left(1-\left(E X P\left(-G^{4} t\right)\right)\right)\right)\right)\right. \\ 0.2144 \mathrm{WO} \\ 2.847 \mathrm{G} \\ 0.286 \mathrm{sg} \end{gathered}$			freles $\quad 0.1$			
AGE	observed g	$\begin{aligned} & \text { observed } \\ & \text { kg. } \end{aligned}$	predicted kg	predicted fbs		oisservad kg	predicted kg	predicted los \qquad
0								
1			0.44	0.96			0.31	$\begin{aligned} & 0.67 \\ & 1.12 \end{aligned}$
2			0.74 1.91	1.64 2.44	742	0.74	0.51	$\begin{aligned} & 1.12 \\ & 1.06 \end{aligned}$
3 4	1023	1.02 1.62	1.71 7.50	2.44 3.30	1011	1.01	1.02	2.25
5	1903	1.90	1.67	4.13	1341	1.34	1.29	2.86
5	2180	2.18	2.22	4.90	1593	1.59	1.55	3.43
7	2491	2.49	2.52	5.8 Ec	1789	1.79	1.79	3.75
8	2718	2.72	2.77	6.12	2010	201	2.00	4.41
9	2997	3.00	2.98	6.57	2148	2.15	2.18	4.80
10	3166	3.17	3.14	6.93	2269	2.26	2.33	5.13
11	3328	3.33	3.27	722	2516	2.52	2.45	5.40
12	3335	3.34	3.37	7.44			2.55	5.92
13	3420	3.42	3.45	7.61			2.83	5.79

Table B7a. Results of yield model runs with various inputs of M.

Table B7b.

Appendix C

Formulae used in Yield Model Analyses of Hudson River American shad

Yield per recruit (YPR) was calculated as follows:

$$
\begin{equation*}
Y P R^{\prime} \frac{\dot{j}_{j^{\prime} t}^{n} N_{j}\left(\mu \left(W_{j}\right.\right.}{R} \tag{1}
\end{equation*}
$$

Where: \quad YPR = lifetime yield (lbs) per recruit
$\mathrm{n} \quad=$ Maximum age in the population (12)
$\mathrm{t}=$ Age of first recruitment (age 3 for females)
$\mathrm{N}_{\mathrm{j}} \quad=$ Number of individuals at the start of year j
$\mathrm{W}_{\mathrm{j}} \quad=$ Mean weight (lbs) of individuals at the start of year j
u = Exploitation rate
R = Number of recruits at age one

Mortality was modeled using the negative exponential model:

$$
\begin{equation*}
N_{p / d}{ }^{\prime} N_{j}\left(\exp \left(\& F_{j}^{o} / \phi M_{j}\right)\right) \tag{2}
\end{equation*}
$$

Where: $\quad N_{j+1} \quad=$ Number of fish alive at age $j+1$
$\mathrm{N}_{\mathrm{j}} \quad=$ Number alive at age j
$\mathrm{F}_{\mathrm{j}} \quad=$ Fishing mortality rate from j to $\mathrm{j}+1$
$\mathrm{M}_{\mathrm{j}} \quad=$ Natural mortality rate from j to $\mathrm{j}+1$

Vulnerability to the fishery was age based, calculated from observed data obtained from monitoring of commercial fishing operations in the Hudson River (Deriso et al. 1996).

Natural mortality was considered age invariant and assigned a value of $\mathrm{M}=0.35$ It was obtained from the formula from Hoenig (1973):

$$
\begin{equation*}
\log _{e} M=1.46-1.01 * \log _{e}\left(T_{M A X}\right) \tag{3}
\end{equation*}
$$

Where: $\quad \mathrm{M}=$ instantaneous rate of natural mortality
$\mathrm{T}_{\mathrm{MAX}}=$ maximum age of the fished stock (12)

Natural mortality at age was calculated from observed weight at age data for the Hudson using methods of Boudreau and Dickie 1989, Dickie 1987. Weight (in lbs) at age was converted to kcal by multiplying by 592 .

$$
\begin{equation*}
M=2.88 *(\text { weight-kcal at age })^{\wedge} 0.33 \tag{4}
\end{equation*}
$$

The model was run at fishing rates $\left(\mathrm{F}_{\mathrm{j}}\right)$ of zero to 0.7 in 0.02 increments

Exploitation was calculated as follows:

$$
\begin{equation*}
E_{j}=\left(F_{j} * A_{j}\right) / Z_{j} \tag{5}
\end{equation*}
$$

Where: $\quad E_{j} \quad=$ Exploitation rate from j to $\mathrm{j}+1$
$F_{j} \quad=$ Fishing mortality rate from j to $j+1$
$A_{j} \quad=$ Total mortality rate from j to $\mathrm{j}+1$, calculated as 1-S, where $S=\exp \left(-Z_{j}\right), Z_{j}=F_{j}+M_{j}$

Number harvested at age was converted to weight by multiplying numbers by weight at age.
Weight at age was estimated using the Gompertz Growth function.

$$
\begin{equation*}
W_{t}=W_{0} * \exp \{G *[1-\exp (-g * t)]\} \tag{6}
\end{equation*}
$$

Where: $\quad W_{t}=$ Weight at age t
$\mathrm{W}_{0} \quad=$ Weight at time t_{0}
G $\quad=$ Instantaneous growth rate at time t_{0}
g $\quad=$ rate of decrease of G
Data for parameters estimates were calculated from observed length at age data collected by the Hudson River Fisheries Unit (unpublished).

Egg per recruit (EPR) was calculated as:

$$
\begin{equation*}
E P R^{1}\left|\frac{\mathrm{j}_{j t}^{n} N_{j}\left(P _ { j } \left(p _ { j } \left(G_{j}\right.\right.\right.}{R}\right|\left(10^{86}\right. \tag{7}
\end{equation*}
$$

Where: EPR = Lifetime egg deposition per recruit
$\mathrm{n} \quad=$ Maximum age in the population (12)
t = Age of first maturity in females
$\mathrm{N}_{\mathrm{j}} \quad=$ Number of females at age j
$\mathrm{P}_{\mathrm{j}} \quad=$ Proportion of females mature at age j
$\mathrm{Gj} \quad=$ Mean fecundity of age j females
R = Number of recruits at age one
Biomass per recruit (BPR) was calculated as:

$$
\begin{equation*}
\left.B P R^{\prime} \left\lvert\, \frac{\mathrm{j}_{j t}^{n} N_{j}\left(P _ { j } \left(W _ { j } \left(G_{j}\right.\right.\right.}{R}\right.\right)\left(10^{86}\right. \tag{8}
\end{equation*}
$$

Where: \quad BPR $=$ Lifetime biomass of spawning stock per recruit
$\mathrm{n} \quad=$ Maximum age in the population (12)
$t \quad=$ Age of first maturity in females
$\mathrm{N}_{\mathrm{j}} \quad=$ Number of females at age j
$\mathrm{P}_{\mathrm{j}} \quad=$ Proportion of females mature at age j
$\mathrm{W}_{\mathrm{j}} \quad=$ Mean weight (kg) of individuals at age
R = Number of recruits at age one
Maturity schedule for female American shad were calculated from observed age and repeat spawning data, to estimate proportion mature at age (Hudson River Fisheries Unit data, unpublished). Fecundity at age from Lehman (1953).

[^0]: (a) estimeted uskoy Eoudreau and Dickie 19899, Oickie et al. 1987
 b) ustimased from abserved Hucieon River data
 (c) Leturasal 1058

