AsSESSMENT REPORT

FOR

Gulf of MAine Northern Shrimp - 2009

Prepared
October 23, 2009
by the
Atlantic States Marine Fisheries Commission's
Northern Shrimp Technical Committee

> Margaret Hunter, Chair (Maine)
> Robert Glenn, Kelly Whitmore (Massachusetts)
> Jessica Fischer, (New Hampshire) Josef Idoine, (NMFS NEFSC) Braddock Spear (ASMFC)

INTRODUCTION

Biological Characteristics

Northern shrimp (Pandalus borealis Krøyer) are hermaphroditic, maturing first as males at about $21 / 2$ years of age and then transforming to females at about $31 / 2$ years of age in the Gulf of Maine.

Spawning takes place in offshore waters beginning in late July. By early fall, most adult females extrude their eggs onto the abdomen. Egg-bearing females move inshore in late autumn and winter, where the eggs hatch. Juveniles remain in coastal waters for a year or more before migrating to deeper offshore waters, where they mature as males. The exact extent and location of these migrations is variable and unpredictable. The males pass through a series of transitional stages before maturing as females. Some females may survive to repeat the spawning process in succeeding years. The females are the individuals targeted in the Gulf of Maine fishery. Natural mortality seems to be most pronounced immediately following hatching, and it is believed that most northern shrimp do not live past age 5 in the Gulf of Maine.

Fishery Management

The Gulf of Maine fishery for northern shrimp is managed through interstate agreement between the states of Maine, New Hampshire and Massachusetts. The management framework evolved during 1972-1979 under the auspices of the State/Federal Fisheries Management Program. In 1980, this program was restructured as the Interstate Fisheries Management Program (ISFMP) of the Atlantic States Marine Fisheries Commission (ASMFC). The Fishery Management Plan (FMP) for Northern Shrimp was approved under the ISFMP in October 1986 (McInnes, 1986, FMR No. 9). The full Commission in May 2004 approved Amendment 1 to the FMP (ASMFC, FMR No. 42). Amendment 1, which entirely replaces the original FMP, establishes biological
reference points for the first time in the shrimp fishery and expands the tools available to manage the fishery. Any new tools proposed to manage the shrimp fishery must be implemented through the ASMFC addendum process.

Within the ISFMP structure, the Northern Shrimp Technical Committee (NSTC) provides annual stock assessments and related information to the ASMFC Northern Shrimp Section. Annually, the Section decides on management regimes after thorough consideration of the NSTC stock assessment, input from the Northern Shrimp Advisory Panel, and comment from others knowledgeable about the shrimp fishing industry. Management under the 1986 FMP was conducted primarily by seasonal closures and mesh size restrictions and was intended "to optimize yield, recognizing that natural fluctuations in abundance will occur" (McInnes 1986, p ii.). The goal of Amendment 1 is "to manage the northern shrimp fishery in a manner that is biologically, economically, and socially sound, while protecting the resource, its users, and opportunities for participation by all stakeholders."

At its Fall 2008 meeting, the Northern Shrimp Section approved a 180-day season: December 1, 2008, through May 29, 2009, inclusive. This will be referred to as the "2009 season" throughout this document. In addition, it continued to require the use of a finfish excluder device known as the "Nordmore Grate" throughout the shrimp fishing season. The Section also maintained the requirement that made it unlawful to use mechanical "shaking" devices to cull, grade, or separate catches of shrimp.

Fishery Assessment

Stock assessments conducted since the 1980's have keyed on strong year classes, (i.e. those hatched in 1982, 1987, 1992, 2001, 2004). Each strong year class supports the shrimp fishery for about three years commencing about three years after hatching.

Based on the abundance of the 1992 and 1993 year classes, the NSTC recommended a full season for 1996, but recommended reductions in fishing effort for December, April and May for the 1997 fishery to afford some protection for small shrimp in the offshore areas. The NSTC recommended limiting the fishery to February and March for the 1998 season and a 40-day
season during the months of February and March in 1999 to protect the berried females and young shrimp in light of a rapidly declining resource.

The NSTC recommended two options for the 2000 fishing season: 1) closed season; 2) open February 14-March 18 or February 16 - March 14 and May 7-31. Due to an increase in the exploitable biomass in the 2001 season, the Committee recommended a modest increase in landings and a corresponding extension of the season to 61 days. In 2001, however, the low numbers of large shrimp, the lack of new recruits, and the presence of a single year class of medium sized shrimp led the committee to advise that no fishing be conducted in the 2002 season. In 2002, the committee recommended no fishing season that would threaten the reproductive capacity of the 1999 year class or would allow significant catches of the 2001 year class. Again, in 2003 it advised no fishing season to protect the 2001 year class and allow the depressed stock to recover.

The Committee took a different approach in 2004 with regard to its recommendations for the fishery. Instead of recommending a specific season length, it recommended maintaining a target fishing mortality rate below $\mathrm{F}=0.22$. In combination, it strongly urged the Section to craft a season that would not permit landings of more than 2,500 metric tons. This approach was well received by the Advisory Panel and Section and was repeated in 2005, when the Committee recommended that 2006 shrimp landings should be less than 5,200 metric tons. In 2006 the Committee did not oppose another season of 140 days for 2007. In 2007 the Committee recommended maintaining fishing mortality below $\mathrm{F}=0.22$ and did not oppose a 152 day season for 2008. In 2008 the Committee recommended the Section set a season that would result in landings at or below 5,103 metric tons.

The following report presents the results of the Technical Committee's 2009 stock assessment. Analyses and recommendations are based on: 1) research vessel survey data collected by the Committee during summer, by the Northeast Fisheries Science Center (NEFSC) during spring and autumn, and by the Maine-New Hampshire inshore trawl survey, 2) past commercial landings data collected by the National Marine Fisheries Service (NMFS) port agents, 3) biological sampling of the commercial landings by personnel from the participating states and
the NMFS, and 4) data from vessel trip reports (VTRs) filed by shrimp fishers. In addition to previously used traditional methods of assessing the stock (i.e. landings data, commercial effort and CPUE estimates, indices of abundance, etc.), more innovative, quantitative tools, such as the Collie-Sissenwine Analysis, ASPIC surplus production, yield per recruit, and eggs per recruit models were introduced in 1997 and continue to be used to provide guidance for management of the stock.

Commercial Fishery Trends

Landings

Annual landings of Gulf of Maine northern shrimp declined from an average of 11,400 metric tons (mt) during 1969-1972 to about 400 mt in 1977, culminating in a closure of the fishery in 1978 (Table 1). The fishery reopened in 1979 and landings increased steadily to over 5,000 mt by 1987. Landings ranged from 2,300-4,400 mt during 1988-1994, and then rose dramatically to 9,200 mt in 1996, the highest since 1973. Landings declined to an average of 1,800 mt for 1999 to 2001, and dropped further in the 25-day 2002 season to 424 mt , the lowest northern shrimp landings since the fishery was closed in 1978. Landings then increased steadily, averaging 2,000 mt during the 2003 to 2006 seasons, then jumping to $4,100 \mathrm{mt}$ in 2007 and $4,900 \mathrm{mt}$ in the 2008 season (preliminary data). The 180 day season of 2009 yielded 2,200 mt which is a decrease from the previous two year’s landings (preliminary data, Table 1 and Figure 1).

Maine landed $92 \%(1,986 \mathrm{mt})$ of the 2009 season total, while New Hampshire and Massachusetts combined landed $8 \%(177 \mathrm{mt})$ of the season total (preliminary data, Table 1). The proportional distribution of landings among the states was similar to 2003-2008, but has shifted gradually since the 1980's when Massachusetts accounted for about 30\% of the catch (Table 1 and Figure 1).

The relative proportion of landings by month (Table 2 and Figure 2a, preliminary data) remained generally similar to past years. The month of February 2009 (28 open days) yielded the highest proportion of the catch (44\%) and the greatest catch per open day. May (31 open days) exhibited
the lowest proportion of the catch (0.1%) and the lowest catch per open day likely due to limited fishing by harvesters and limitations set by processors.

Most northern shrimp fishing in the Gulf of Maine is conducted by otter trawls, although traps are also employed off the central Maine coast. According to federal and state of Maine Vessel Trip Reports (VTRs), trappers averaged 14\% of Maine’s landings during 2001 to 2008 (preliminary data), and 17\% (preliminary data) in 2009 (Table 3).

Size, Sex, and Maturity Stage Composition of Landings

Size composition data (Figures 3-5), collected from catches since the early 1980s, indicate that trends in landings have been determined primarily by recruitment of strong (dominant) year classes. Landings more than tripled with recruitment of a strong assumed 1982 year class in 1985-1987 and then declined sharply in 1988. A strong 1987 year class was a major contributor to the 1990-1992 fisheries. A strong 1992 year class, supplemented by a moderate 1993 year class, partially supported large annual landings in 1995-1998. Low landings in 1999 - 2003 were due in part to poor 1994, 1995, 1997, 1998, and 2000 year classes with only moderate 1996 and 1999 year classes. A very strong 2001 year class supported higher landings in 2004 - 2006. In the 2007 fishery, landings were mostly composed of assumed 4 -year-old females from the moderate to strong 2003 year class, and possibly 6-year-olds from the 2001 year class. Males, transitionals, and female I's from the strong assumed 2004 year class were also evident, as well as a few small males from the 2005 year class. In the 2008 fishery, landings were mostly composed of the assumed 4 year-old females from the strong 2004 year class, the 2003 year class (assumed 5 year-old females, which first appeared as a moderate year class in 2004), and some males and transitionals from the moderate 2005 year class. There were also a few juveniles in the <10-15mm size range from the assumed 2007 year class. In the 2009 fishery, catches were comprised mainly of assumed 5-year old females from the strong 2004 year class, probably some 4-year old females from the 2005 year class, a few transitionals and female I's from the 2005 or 2006 year classes, some males from the 2007 year class, and a few juveniles in the $<10-15 \mathrm{~mm}$ size range from the assumed 2008 year class (Figures $3-5$).

Maine trappers landed fewer small shrimp, and generally were more apt to catch large females after egg hatch, than trawlers, as in previous years (Figure 3). See the table below for the average counts per pound by month and gear.

2009 commercial shrimp fishery average counts per pound, from port samples

Maine Trawls Maine Traps Maine Total	Pandalus borealis only						All shrimp species					
	Dec.	Jan.	Feb.	Mar.	Apr.	May	Dec.	Jan.	Feb.	Mar.	Apr.	May
	45	42	37	39	49	n/a	45	44	39	41	49	n/a
	n/a	35	35	35	n/a	n/a	n/a	40	37	36	n/a	n/a
	45	41	37	38	49	n/a	45	43	38	39	49	n/a
Massachusetts	n/a	n/a	n/a	n/a	n/a	n/a	n / a	n/a	n/a	n/a	n/a	n/a
New Hampshire	n/a	47	43	39	n / a	n/a	n / a	56	44	43	n/a	n / a

Spatial and temporal differences in the timing of egg-hatch can be estimated by noting the relative abundance of ovigerous females to females that have borne eggs in the past but are no longer carrying them (female stage II). According to port samples, in December 2008, in Maine, 1.7% of the trawled catch was female stage II; in January 2009 this increased to 5.8% and in February it increased to 17.8%. In March, female stage II's further increased to 61.2%. Note that egg hatch in the 2009 season was somewhat earlier than in 2008, but later than 2007 and about the same as the 2006 season. Maine trappers caught 10.4\% female stage II in January 2009, 34.8\% in February, and 91.0\% in March, consistently higher than in the trawl catches each month and higher than in trap catches in respective months in 2008.

In New Hampshire trawl catch samples, the percentage of female stage II shrimp was 12.0% in January 2009, 57.0\% in February, and 63.1\% in March (Figure 4), all more than Maine for the same months, probably reflecting the eastern Gulf lagging the west in the timing of egg hatch. No samples were collected from Massachusetts during the 2009 season, because of low fishing activity.

Discards

Port samplers in Maine reported one trawl catch that was sorted to remove small fish and shrimp in April 2009 (White and Lash, 2009). Maine trappers do manually shake out the smaller pandalid species of veined or striped shrimp (Pandalus montagui and Dichelopandalus
leptocerus) on occasion. Because of a lack of detailed information, shrimp discards from the shrimp and other fisheries are not evaluated in this assessment.

Black Gill Syndrome

Shrimp collected during routine port-sampling in Maine in 2003 exhibited a high incidence (greater than 70\%) of Black Gill Syndrome, also called Black Gill Disease or Black Spot Syndrome. Affected shrimp displayed melanized, or blackened gills, with inflammation, necrosis, and significant loss of gill filaments. Black Gill Syndrome has also been documented in white shrimp in South Carolina (http://praise.manoa.hawaii.edu/news/eh216.html) and in the Gulf of Maine in the 1960s and 1970s (Apollonio and Dunton, 1969; Rinaldo and Yevitch, 1974). Its etiology is unknown, although fungal and ciliated protist parasites have been implicated. In samples collected in Maine during the 2004-2009 fisheries, the incidence of Black Gill Syndrome was much lower, and detected cases were much less severe, than in 2003.

Effort and Distribution of Effort

Since the late 1970's, effort in the fishery (measured by numbers of trips in which shrimp gear is used) has increased and then declined on three occasions. The total number of trawl trips in the fishery (Table 4 and Figure 6a) peaked at 12,285 during the 1987 season. Increases in season length, shrimp abundance, and record ex-vessel prices, coupled with reduced abundance of groundfish, all contributed to this increase. Effort subsequently fell to 5,990 trips in the 1994 season. Effort nearly doubled between 1994 and 1996 and then declined again from the 1996 level of 11,791 to 1,010 trips in 2002, a year with only a 25 -day open season. The number of trips increased during 2003-2005 as the seasons were lengthened, to 2,962 trawl trips in 2005. Trips in 2006 dropped to 1,557, likely due to poor market conditions, increased in 2007 to 2,605, and increased in 2008 to 3,920, the most since 1999 (preliminary data, Table 4). In 2009, the length of the season was increased to 180 days while the effort decreased to 1,784 trips (preliminary data, Table 4). This decline in effort was likely caused by limited demand from the processors and poor market conditions.

The number of vessels participating in the fishery in recent years has varied from a high of 347 in 1996 to a low of 142 in 2006 (Table 6). In 2009, there were 137 vessels from Maine, 1 from

Massachusetts, and 11 from New Hampshire, for a total of 149, according to federal VTR and Maine harvester logbook data (preliminary). Of these, 71 of the Maine boats were trapping.

Maine trapping operations accounted for an average of 22\% of the Maine shrimp fishing trips in 2001-2005. This number has gradually increased, to 32\% for 2006-2009, according to VTRs (preliminary, Table 5).

Prior to 1994, effort (numbers of trips by state and month) was estimated from landings data collected from dealers, and landings per trip information (LPUE) from dockside interviews of vessel captains: \quad Effort $=\frac{\text { Landings }}{\text { LPUE }}$

Beginning in the spring of 1994, a vessel trip reporting system (VTR) supplemented the collection of effort information from interviews. From 1995 to 2000, landings per trip (LPUE) from these logbooks were expanded to total landings from the dealer weighouts to estimate the total trips: Total.Trips $=$ VTR.Trips $\frac{\text { Total.Landings }}{\text { VTR.Landings }}$

Since 2000, VTR landings have exceeded dealer weighout landings, and the above expansion is not necessary. However, VTRs for 2008 and 2009 are still being received and processed. Therefore, landings and effort estimates reported here for recent years should be considered extremely preliminary. The 1996 assessment report (Schick et al. 1996) provides a comparison of 1995 shrimp catch and effort data from both the NEFSC interview and logbook systems and addresses the differences between the systems at that time. It showed a slightly larger estimate from the logbook system than from the interview system. Thus effort statistics reported through 1994 are not directly comparable to those collected after 1994. However, patterns in effort can be examined if the difference between the systems is taken into account. An additional complication of the logbook system is that one portion of the shrimp fishery may not be adequately represented by the logbook system during 1994-1999. Smaller vessels fishing exclusively in Maine coastal waters are not required to have federal groundfish permits and were not required to submit shrimp vessel trip reports until 2000. In the 1994-2000 assessments, effort from unpermitted vessels was characterized by catch per unit effort of permitted vessels.

Seasonal trends in distribution of trawl effort can be evaluated from port interview data. The relative magnitude of offshore fishing effort (deeper than 55 fathoms) has varied, reflecting seasonal movements of mature females (inshore in early winter and offshore following larval hatching), but also reflecting harvesters' choices for fishing on concentrations of shrimp. In the 2009 season in Maine, sampled trawl trips were about 94% offshore in December, decreasing to about 11% in January, 7 \% in February, increasing to 26% in March and 100% offshore in April, based on a total of 108 trawler interviews. Overall, the proportion of offshore trips was a bit higher in 2009 than in 2008; 2008 was lower than 2006 and 2007, perhaps because of increased fuel costs. In New Hampshire, all sampled trips were inshore, based on a total of 8 interviews during January through March.

Locations of 2009 fishing trips and landings from federal VTRs are plotted by 10-minute square in Figure 7.

Catch per Unit Effort

Catch per unit effort (CPUE) indices have been developed from NMFS interview data (19831994), logbook data (1995-2009), and Maine port interview data (1991-2009) and are measures of resource abundance and availability (Table 7 and Figure 6b). They are typically measured in catch per hour (from Maine interview data) or catch per trip. A trip is a less precise measure of effort, because trips from interviews and logbooks include both single day trips and multiple day trips (in the spring), and the proportion of such trips can vary from season to season.

Pounds landed per trawl trip, from VTRs, averaged 1,393 pounds during 1995-2000. In 2001, the catch per trip dropped to 740 pounds, the lowest since 1988, and remained low, at 831 pounds, in 2002. During 2003 - 2005 it averaged 1,531 lbs/trip; the increasing trend continued in 2006 with 2,562 pounds per trip. In 2007 the highest pounds per trip of the time series was observed at 3,026 pounds. It decreased in 2008 to 2,319 pounds (preliminary) and again in 2009 to 2,246 pounds per trip (preliminary), still well above average (Figure 6b).

More precise CPUE indices (pounds landed per hour fished) have also been developed for both inshore (depth less than 55 fathoms) and offshore (depth more than 55 fathoms) areas using
information collected by Maine's port sampling program, and agree well with the (less precise) catch per trip data from logbooks (see Table 7 and Figure 6b). Maine inshore CPUE for 2009 was $400 \mathrm{lbs} / \mathrm{hr}$, offshore was $315 \mathrm{lbs} / \mathrm{hr}$, and the season average was $370 \mathrm{lbs} / \mathrm{hr}$, well above the time series average of $236 \mathrm{lbs} / \mathrm{hr}$.

Resource Conditions

Trends in abundance have been monitored since the late 1960's from data collected in Northeast Fisheries Science Center (NEFSC) spring and autumn bottom trawl surveys and in summer surveys by the State of Maine (discontinued in 1983). A Maine-New Hampshire inshore trawl survey has been conducted each spring and fall, beginning during the fall of 2000 (Sherman et al. 2005). A state-federal shrimp survey was initiated by the NSTC in 1984. The latter survey is conducted each summer aboard the R / V Gloria Michelle employing a stratified random sampling design and gear specifically designed for Gulf of Maine conditions. The NSTC has placed primary dependence on the summer survey for fishery-independent data used in stock assessments, although other survey data have been valuable as well.

There has generally been good agreement between the NEFSC autumn survey index and fishery trends (Table 11, Fall kg/tow, and Figures 8c and 9). The index was close to all time highs at the beginning of the time series in the late 1960's and early 1970’s when the Gulf of Maine Northern shrimp stock was at or near virgin levels. In the late 1970's the index declined precipitously as the fishery collapsed; this was followed by a substantial increase in the middle 1980's to early 1990's, with peaks in 1986, 1990 and 1994. This reflects recruitment and growth of the strong presumed 1982, 1987 and 1992 year classes and the above average 1993 year class. After declining to $0.90 \mathrm{~kg} /$ tow in 1996, the index rose sharply in 1998 and 1999 to 1.99 and 2.32 kg per tow respectively, both well above the time series mean of $1.77 \mathrm{~kg} / \mathrm{tow}$. This is likely due to recruitment of the 1996 year class to the survey gear. Beginning in 2000, the fall survey index declined precipitously for two consecutive years reaching a low of $0.63 \mathrm{~kg} / \mathrm{tow}$ in 2001 , indicating very poor 1997 and 1998 year classes. Since 2002, the index has generally increased, reaching unprecedented time series highs in 2006 and 2007 of $6.64 \mathrm{~kg} /$ tow and $4.13 \mathrm{~kg} / \mathrm{tow}$, respectively, declining to $3.05 \mathrm{~kg} /$ tow in 2008. From 2002 to 2008, landings generally rose each
year as well, although the resource highs were not reflected in the fishery likely due to poor market conditions for shrimp. Elevated fall survey indices observed since 2002 are indicative of robust assumed 2001 and 2004 year classes and moderate 2003, 2005, and 2007 year classes.

The Maine-New Hampshire inshore trawl survey took place in five regions and three depth strata ($1=5-20 \mathrm{fa}, 2=21-35 \mathrm{fa}, 3=36-55 \mathrm{fa}$) until a deeper stratum ($4,>55 \mathrm{fa}$) was added in 2003 (Figure 8a). The survey consistently caught shrimp in regions 1-4 (NH to Mt. Desert) and depths 3-4 (> 35 fa), and more were caught in the spring than the fall. The $\log _{e}$-transformed stratified mean weights per tow for P. borealis for the spring and fall surveys using regions 1-4 and depths 3-4 only are presented in Tables 8 and 11 and Figure 10. This index has risen from $4.16 \mathrm{~kg} / \mathrm{tow}$ during spring 2003 to $15.42 \mathrm{~kg} /$ tow during spring 2008. In 2009 the index declined to 9.64 kg/tow.

Abundance and biomass indices (stratified mean catch per tow in numbers and weight) for the state-federal summer survey from 1984-2009 are given in Table 9 and Figures 8b and 11, and length-frequencies by year are provided in Figure 12. The $\log _{e}$ transformed mean weight per tow averaged $15.8 \mathrm{~kg} /$ tow from 1984 through 1990. Beginning in 1991 this index began to decline and averaged $10.2 \mathrm{~kg} /$ tow from 1991 through 1996. The index then declined further, averaging $6.5 \mathrm{~kg} /$ tow from 1997 through 2003, and reaching a time series low of $4.3 \mathrm{~kg} /$ tow in 2001. Between 2003 and 2006 the index increased markedly, reaching a new time series high in 2006 ($66.0 \mathrm{~kg} /$ tow). This number should be viewed with caution because the 2006 summer survey indices were based on only 29 tows, compared with about 40 tows in most years (Table 9). The index averaged $14.6 \mathrm{~kg} /$ tow in 2007-2009, with a value of 15.4 in 2009, somewhat above the time series mean of $13.9 \mathrm{~kg} /$ tow and the median of $11.0 \mathrm{~kg} / \mathrm{tow}$ (Table 9). The total mean number of shrimp per tow demonstrated the same general trends over the time series (Table 9 and Figure 11).

The stratified mean catch per tow in numbers of 1.5-year old shrimp (Table 9, Figure 11, and graphically represented as the total number in the first (left-most) size modes in Figure 12) represents a recruitment index. Although these shrimp are not fully recruited to the survey gear, this index appears sufficient as a preliminary estimate of year class strength. This survey index
indicated strong 1987, 1992, 2001, and 2004 year classes, and moderately strong year classes for 1990 and 1999. The 1997 and 1998 age classes were weak, both well below the time series mean of 404 individuals per tow. In 2001 the age 1.5 recruitment index was at its lowest level since 1984, with a stratified mean of 18 individuals per tow on the transformed scale, representing recruitment failure of the 2000 year class. In 2002 the age 1.5 recruitment index increased dramatically to 1,164 , which was the time series high and represents an extremely strong 2001 year class. The index subsequently dropped to 11 individuals per tow in 2003, indicating a very poor 2002 year class, the worst in the time series. The index increased in 2004 to 286 individuals per tow, and reached a time series high in 2005 (1,753 individuals per tow). This is indicative of a moderate 2003 year class and a very strong 2004 year class. The age 1.5 recruitment index dropped in 2006 (374 individuals per tow) and again in 2007 (28 individuals per tow), indicating a moderate 2005 year class and very weak 2006 year class. The index increased to 508 individuals per tow in 2008 and 582 individuals per tow in 2009, indicating moderate but above average 2007 and 2008 year classes.

Individuals $>22 \mathrm{~mm}$ will be fully recruited to the upcoming winter fishery (primarily age 3 and older) and thus survey catches of shrimp in this size category provide indices of harvestable numbers and biomass for the coming season (Table 9 and Figure 11). The harvestable biomass index exhibited large peaks in 1985 and 1990, reflecting the very strong 1982 and 1987 year classes respectively. This index has varied from year to year but generally trended down until 2004. The 2001 index of $1.5 \mathrm{~kg} /$ tow represented a time series low, and is indicative of poor 1997 and 1998 year classes. In 2002 the index increased slightly to $2.9 \mathrm{~kg} /$ tow, reflecting recruitment of the moderate 1999 year class to the index. The index subsequently dropped to the second lowest value in the time series ($1.7 \mathrm{~kg} /$ tow) in 2003. From 2003 to 2006, the fully recruited index increased dramatically, reaching a time series high in 2006 ($29.9 \mathrm{~kg} / \mathrm{tow}$). This increase may have been related to the continued dominance of the record 2001 year class, some of which may have survived into the summer of 2006, and to an unexplained increase in the number of female stage 1 shrimp (Figure 9), probably the 2003 year class. In 2007 the index declined to 4.1 $\mathrm{kg} /$ tow with the passing of the 2001 year class and the diminishing of the 2003 year class. The 2008 index increased to $10.8 \mathrm{~kg} /$ tow, reflecting the strong 2004 and moderate 2005 year classes. The >22 mm weight index declined slightly in 2009 to $8.5 \mathrm{~kg} /$ tow, still above the time series
mean of $6.5 \mathrm{~kg} /$ tow. The moderate 2005 and 2007 year classes and perhaps a remnant of the strong 2004 year class contributed to the composition of the 2009 summer survey $>22 \mathrm{~mm}$ index.

Analytical Stock Assessment

Descriptive information for the Gulf of Maine shrimp fishery (total catch, port sampling, trawl selectivity, survey catches, and life history studies) were modeled to estimate fishing mortality, stock abundance, and candidate target fishing levels. The analytical stock assessment comprises three fishery models: the Collie-Sissenwine Analysis (CSA) (Collie and Sissenwine 1983; Collie and Kruse 1998) tracks the removals of shrimp using summer survey indices of recruits and fully-recruited shrimp scaled to total catch in numbers; surplus production analysis models the biomass dynamics of the stock with a longer time series of total landings and three survey indices of stock biomass; a yield-per-recruit and eggs-per-recruit model simulates the life history of shrimp (including growth rates, transition rates, natural mortality, and fecundity) and fishing mortality on recruited shrimp using estimates of trawl selectivity to estimate yield and egg production at various levels of fishing mortality, for guidance in determining the levels of fishing that are most productive and sustainable. See the Appendix for a discussion of natural mortality rates (M).

CSA results, assuming $\mathrm{M}=0.25$, are summarized in Table 10 and Figures 13 and 14 - see the Appendix for results with $\mathrm{M}=0.40$ and $\mathrm{M}=0.60$. Abundance and catchability were relatively well estimated, and the model fit the data well. Estimates of recruitment to the fishery averaged 0.7 billion individuals between 1985 and 1990, declining (average 0.5 billion) through 1991 to 1994. Recruit abundance rose to 0.9 billion before the 1996 fishing season, then declined steadily to less than 0.3 billion before the 2002 fishing season. Estimates of 1.8 billion (both 2006 and 2007) are the highest seen (from 1985 to present). Current abundance of recruits is estimated to be 0.8 billion. Fully-recruited abundance averaged 1.0 billion individuals and peaked at 1.1 billion before the 1991 season. Since that point, fully-recruited abundance declined steadily to 0.3 billion before 2001, and then increased to 2.5 billion before 2008, then declined to 1.8 billion in the current year. Total stock biomass estimates averaged about 13,400 mt through 1996 and decreased to a time series low of 4,500 mt before 2001. Total stock biomass has increased over
recent years to its current value of 24,200 mt, down slightly from the series high of 26,900 mt before 2007 (Table 10, Figures 13, 14).

Annual estimates of fishing mortality (F) averaged 0.24 (19\% exploitation) for the 1985 to 1994 fishing seasons, peaked at 1.03 (57% exploitation) in the 1997 season and decreased to 0.08 (7\% exploitation) in 2002 (Table 10; Figures 13, 14). These declines were due in part to a short season and poor stock conditions. Continued poor stock conditions (in terms of exploitable shrimp) along with an exceptional recruitment pulse resulted in F rising to 0.22 (18\% exploitation) in 2004. The 2009 estimate of F is 0.08 (7% exploitation). Recent patterns in F reflect the pattern in nominal fishing effort (Tables 4 and 10, Figures 6 and 13).

Precision of CSA estimates was assessed by "bootstrap" analysis, in which survey measurement errors were randomly shuffled 2000 times to provide simulated replications of the model. Bootstrap results suggest that estimates of abundance, biomass and mortality were relatively precise (Figure 13).

Because of a lack of detailed information about discards, there were no analyses of discarding for this assessment.

An alternative method of estimating stock size and F was used to corroborate results from CSA analysis. A surplus production model (ASPIC) was fit to seasonal catch and survey biomass indices from 1968 to 2009 (summarized in Table 11). F in 2009 ($\mathrm{F}=0.07$) is below the fishing mortality target/threshold ($\mathrm{F}=0.22$) established in Amendment 1 to the northern shrimp Fishery Management Plan. The 2009 starting biomass ($30,000 \mathrm{mt}$) was at its highest level since 1970, and is above the average observed in the time period from 1985 through 1994 when the Gulf of Maine Northern shrimp biomass was stable (15,370 mt).

Estimates of F and Biomass from the surplus production model generally confirmed the pattern of estimates from the CSA model between 1985 and 2007 (Figures 15 and 16). However, there is some divergence in the trend in biomass seen for terminal years (2008 and 2009), where the
surplus production model trends upward and the CSA trends downward minimally. The terminal year values of fishing mortality and biomass in both models are typically poorly estimated.

Yield per recruit and percent maximum spawning potential were estimated for the Gulf of Maine northern shrimp fishery (Table 12 and Figure 17, from Cadrin et al 1999). Yield per recruit was maximum at $\mathrm{F}=0.77\left(\mathrm{~F}_{\max }\right)$ (48\% exploitation). The increase in yield per unit F decreased to one tenth the initial increase at $\mathrm{F}=0.46$ ($\mathrm{F}_{0.1}$) (33% exploitation). Maximum spawning potential (i.e., with no F) was 2,395 eggs per recruit. Spawning potential was reduced by half at $\mathrm{F}=0.25$ ($\mathrm{F}_{50 \%}$, 20\% exploitation).

As concluded by the Stock Assessment Review Committee (SARC) (NEFSC 1996), the stock was not replacing itself when spawning potential was reduced to less than 20% of maximum, and the stock collapsed when egg production was reduced further. Reproductive success for Gulf of Maine northern shrimp may be a function of population fecundity and spring surface temperature (Figure 19) (reviewed by Clark et al, 2000). Therefore, $\mathrm{F}_{20 \%}$ may be an appropriate overfishing threshold, which would result in a target F well below 0.6 . A sustainable target F may be the average F from 1985 through 1994, which was 0.24 (which allows 50% egg production per recruit) (Table 12, Figure 17).

$\underline{\text { SUMMARY }}$

Landings in the Gulf of Maine northern shrimp fishery declined after the mid 1990's, from a high of $9,166 \mathrm{mt}$ in 1996 to a low of 424 mt in 2002, the result of low abundances of shrimp and reductions in fishing effort. Since then, landings have increased to $4,912 \mathrm{mt}$ in the 152 -day 2008 season (preliminary), and then declined to $2,163 \mathrm{mt}$ in the 180 -day 2009 season. The 2009 season was characterized by high catch rates, poor price, high fuel prices, and market limitations. 2009 landings were comprised mostly of assumed 5-year-old female shrimp from the strong 2004 year class.

The number of fishing vessels and trawl trips dropped from about 347 and 11,791 respectively in 1996 to 198 and 1,010 in 2002, increased to 240 and 3,920 respectively in 2008 (preliminary),
and then declined to 149 and 1,784 in 2009 (preliminary). Of the vessels that reported shrimp landings in 2009, 71 were trapping, and trappers accounted for about 16% of the landings.

Fishing mortality rates (F), as calculated by CSA, declined from 1.03 in 1997 to 0.08 in 2002, then rose to 0.21 in the 2008 fishery and dropped to 0.08 in 2009 (preliminary). F was above the 1985-1994 average (the target or threshold F in the FMP adopted in 2004) every year from 1995 through 2001, and has been at or below it every year since.

Current landings, vessels, and trips, are calculated from vessel trip reports (federal and Maine state VTRs). Note that 2007 landings were incomplete when calculated in September of 2007 (Table 1 of the 2007 assessment report), and went up by 21% when recalculated in September 2008 (Table 1 of the 2008 report). In this 2009 assessment, 2008 landings went up by just 3\% from the 2008 assessment, because Maine improved report compliance enforcement during 2008. It remains to be seen whether this improved compliance continued in 2009.

Exploitable biomass as estimated from CSA declined from 13,800 mt at the beginning of the 1996 season to a time series low of 4,500 before 2001. Since then the biomass estimate has risen to $11,400 \mathrm{mt}$ before 2005, as a result of the appearance of the strong 2001 year class, and to 24,200 mt for the 2010 season, driven by a strong 2004 year class, high summer survey indices for 2005 and 2006 and above average indices for 2008 and 2009. The technical committee notes that there is a high degree of uncertainty around terminal year estimates, however. Exceptionally high survey indices from the 2006 summer survey, which had fewer tows than usual, also add a source of uncertainty.

Size composition data from both the fishery and summer surveys indicate that good landings have followed the recruitment of strong (dominant) year classes. Poor landings from 1998 to 2004, as well as low biomass estimates, can be attributed in part to the below-average recruitment of the assumed 1994, 1995, 1997, 1998, 2000, and 2002 year classes. In 2010, the moderate 2005 year class (assumed 5-year-old females), will contribute most to landings, the weak 2006 year class will be assumed 4-year-old females and transitionals, and the aboveaverage 2007 and 2008 year classes will be transitionals, males, and juveniles.

RECOMMENDATIONS

The Northern Shrimp Technical Committee bases its recommendations to the Section on its assessment of current stock status, the biology of the species, and the stated management goal of protecting and maintaining the stock at levels that will support a viable fishery (Amendment 1 to the FMP, ASMFC 2004).

The committee recommends that the Section continue its recent efforts to maintain fishing mortality at or below the FMP target/threshold value of 0.22 . The arrival of the above-average 2007 and 2008 year classes present welcome opportunities to continue rebuilding the stock. A very weak 2006 year class continues to be a concern.

Short-term commercial prospects are good; the abundance of shrimp of length greater than 22 mm is above the average value for the 1984-2009 survey period. If these shrimp follow traditional patterns of migrating and aggregating behavior, the 2010 fishery can anticipate good catches at current levels of fishing effort. Because of the size distributions of the 2009 survey catches, we expect catches in 2010 to be comprised of mostly 5-year-old female shrimp, with counts per pound similar to those in the 2006 and 2009 fisheries, when the 2001 and 2004 year classes were the dominant components of the landings. However, if the female shrimp fail to separate themselves from the smaller males, or if the fishery is conducted when the year classes are mixed, a "mixy" product may result, and an opportunity to husband the smaller shrimp will be lost.

Catch in numbers (C) is a function of abundance (N) and exploitation rate (μ, which is a function of fishing mortality F and natural mortality M).

$$
C=N \mu=N F \frac{1-e^{-(F+M)}}{F+M}
$$

Using this relationship, the estimated abundance of recruits and new recruits for fishing season 2010 (from Table 10), and an estimate of 0.25 for M, it is possible to estimate landings (in numbers) for different levels of F. In order to convert landings in numbers to landings in weight, an assumption must be made about the mean weight of the shrimp caught in the upcoming
fishery. The committee has compared the shrimp size distributions from the 2009 summer survey with recent past surveys, and finds that they are most similar to the distributions in the 2005 and 2008 surveys. Therefore it can be expected that the size distributions in the 2010 fishery will be most similar to those of the 2006 and 2009 fisheries. The mean weight of shrimp in those years was 10.83 and 12.08 grams respectively. Using this range of weights to convert numbers of shrimp to landings in weight for varying F gives:

	Like 2006 fishery, mean wt $=10.83 \mathrm{~g}$	Like 2009 fishery, mean wt = 12.08g
Fishing Mortality		
Rate for 2010	Estimated	Estimated Landings (mt)
0.05	1,082	Landings (mt)
0.10	2,113	1,206
0.15	3,097	3,356
0.20	4,034	3,453
0.22	4,397	4,498
0.24	4,833	4,902
0.25	4,928	5,388
0.30	5,780	5,494
0.40	7,367	6,444
0.50	8,811	8,214
0.60	10,124	9,823
0.75	11,875	11,287
1.00	14,297	13,240
1.25	16,216	15,941
		18,080

Therefore, the committee recommends a 2010 shrimp landings level at or below 4,400 to
$\mathbf{4 , 9 0 0} \mathbf{~ m t}$, depending on the size of the individual shrimp caught. If shrimp smaller than 10.83 g are caught in substantial numbers, the fishing mortality rate (F) will be higher for the same landed weight.

Yield-per-recruit and egg-per-recruit analyses (Table 12) show that shrimp reach both their potential maximum weight yield and maximum egg production at about ages $4-5$. Therefore, protecting younger shrimp and late-maturing males is recommended for both economical and biological reasons. Protecting egg-bearing females prior to egg hatch, which usually occurs during February and/or March, is also recommended.

The committee notes the uncertainty in the estimates of F and stock abundance associated with the terminal years of the CSA model, particularly when landings data are incomplete. There is also considerable uncertainty in projecting the exploitable biomass from the time of the summer survey to the fishing season, and in predicting the size distribution of the catch in the upcoming season. The committee urges caution in selecting management options, since estimates of both F and stock abundance are subject to change in either direction, that is, these parameters may be over- or underestimated in any given year.

The committee urges managers to continue to take whatever action is necessary to ensure timely reporting of landings. The committee also urges managers to ensure that the summer shrimp survey continues to be adequately funded.

REFERENCES

Apollonio, S., and E.E. Dunton. 1969. The northern shrimp Pandalus borealis, in the Gulf of Maine. Dept. Sea and Shore Fisheries MS, Augusta, Maine, 82p.

Atlantic States Marine Fisheries Commission. 2004. Amendment 1 to the interstate fishery management plan for northern shrimp. ASMFC Fishery Management Rep. No. 42, 69p.

Cadrin, S.X., S.H. Clark, D.F. Schick, M.P. Armstrong, D. McCarron and B. Smith. 1999. Application of catch-survey models to the northern shrimp fishery in the Gulf of Maine. N. Amer. J. of Fisheries Management 19:551-568.

Clark, S.H., S.X. Cadrin, D.F. Schick, P.J. Diodati, M.P. Armstrong, and D. McCarron. 2000. The Gulf of Maine northern shrimp (Pandalus borealis) fishery: a review of the record. J. Northw. Atl. Fish. Sci. 27: 193-226.

Collie, J.S. and G.H. Kruse. 1998. Estimating king crab (Paralithodes camtschaticus) abundance from commercial catch and research survey data. In Proceedings of the North Pacific

Symposium on Invertebrate Stock Assessment and Management. Edited by G.S. Jamieson and A. Cambell. Can. Spec. Publ. Fish. Aquat. Sci. 125. pp. 73-83.

Collie, J.S. and M.P. Sissenwine. 1983. Estimating population size from relative abundance data measured with error. Can. J. Fish. Aquat. Sci. 40: 1871-1879.

McInnes, D. 1986. Interstate fishery management plan for the northern shrimp (Pandalus borealis Kroyer) fishery in the western Gulf of Maine. ASMFC Fish. Manage. Rep. 9.

North Atlantic Marine Alliance (NAMA). 2006. Ecosystem relationships in the Gulf of Maine combined expert kknowledge of fishermen and scientists. NAMA Collaborative Report 1:1-16, 2006.

NEFSC (Northeast Fisheries Science Center). 1996. Report of the $22^{\text {nd }}$ Northeast Regional Stock Assessment Workshop ($22^{\text {nd }}$ SAW) Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. Woods Hole, MA. NEFSC Reference Document 96-13. pp. 118-150.

Rinaldo, R.G. and P. Yevich. 1974. Black spot gill syndrome of the northern shrimp Pandalus borealis. J Invertebrate Pathology 24(2): 224-233.

Schick, D.F., S. Cadrin, D. McCarron, A. Richards and B. Smith. 1996. MS. Assessment Report for Gulf of Maine Northern Shrimp -- 1996. Atlantic States Marine Fisheries Commission’s Northern Shrimp Technical Committee. October 18, 1996. 33p.

Sherman, S.A., K. Stepanek, and J. Sowles. 2005. Maine - New Hampshire inshore groundfish trawl survey - procedures and protocols. Maine Dept. of Marine Resources, W. Boothbay Harbor, Maine. 42p.

Online at http://www.maine.gov/dmr/rm/trawl/reports/proceduresandprotocols.pdf

White, L. and M. Lash. 2009. Commercial port sampling of northern shrimp (Pandalus borealis) along the Maine coast. Maine Dept. of Marine Resources, W. Boothbay Harbor, Maine. 13p. Online at http://www.maine.gov/dmr/rm/shrimp/portsamp09.pdf

Acknowledgments

The Committee sincerely thanks all those people who have contributed to this assessment through their time and efforts as part of the crew on the R / V Gloria Michelle shrimp survey, and as port samplers, sample processors, and data entry personnel. Their hard work has made this effort possible.

Table 1. Commercial landings (mt) of northern shrimp in the western Gulf of Maine.

*Includes removals by experimental studies
2008 and 2009 are preliminary.

Table 2. Distribution of landings (metric tons) in the Gulf of Maine northern shrimp fishery by season, state, and month.

Table 2 continued.

	Dec	Jan	Feb	Mar	Apr	May	Other	Season Total
2003 Season, 38 days, Jan 15 - Feb 27, Fridays off								
Maine		477.5	602.4	1.2			0.02	1,081.2
Mass.		10.5	12.6					23.1
N.H.		28.2	78.5					106.7
Total		516.2	693.5				0.02	1,211.0
2004 Season, 40 days, Jan 19-Mar 12, Saturdays and Sundays off								
Maine	1.8	522.3	845.1	376.1	4.7	2.7		1,752.6
Mass.		5.2	10.1	2.1				17.5
N.H.		27.0	87.4	60.3				174.6
Total	1.8	554.5	942.6	438.5	4.7	2.7		1,944.8
2005 Season, 70 days, Dec 19-30, Fri-Sat off, Jan 3 - Mar 25, Sat-Sun off								
Maine	75.0	377.7	869.9	896.0				2,218.6
Mass.	5.9	8.1	24.7	9.4				48.1
N.H.	17.3	53.5	175.3	43.7				289.8
Total	98.2	439.3	1,069.9	949.1				2,556.5
2006 Season, 140 days, Dec 12 - Apr 30								
Maine	133.0	585.1	814.0	323.1	110.7			1,965.9
Mass.	5.3	6.7	6.4	6.3				24.8
N.H.	3.4	27.9	8.7	43.8	6.5			90.2
Total	141.7	619.7	829.1	373.2	117.2			2,080.9
2007 Season, 151 days, Dec 1 - Apr 30								
Maine	574.6	1,208.4	1,386. 6	443.4	146.0	0.4	0.1	3,759.4
Mass.	2.2	0.4	4.4	3.4				10.3
N.H.	44.8	141.5	78.9	12.9	12.1			290.2
Total	621.6	1,350.3	1,469.8	459.7	158.0	0.4	0.1	4,059.9
*2008 Season, 152 days, Dec 1 - Apr 30								
Maine	392.7	1,025.8	2,019.7	984.0	50.1		0.2	4,472.4
Mass.	4.3	3.2	7.9	10.0				25.4
N.H.	94.2	120.7	161.6	35.7	1.7			413.8
Total	491.1	1,149.7	2,189.2	1,029.7	51.7		0.2	4,911. 6
*2009 Season, 180 days, Dec 1 - May 29								
Maine	119.3	496.0	883.4	457.7	28.2	1.5		1,986.1
Mass.\& NH	20.2	84.2	68.8	1.2	2.6			177.0
Total	139.5	580.2	952.3	458.9	30.8			2,163.2

Table 3. Distribution of landings (metric tons) in the Maine northern shrimp fishery by season, gear type, and month.

Table 4. Distribution of fishing effort (number of trawl trips) in the Gulf of Maine northern shrimp fishery by season, state, and month.

	$\underline{\text { Dec }}$	Jan	Feb	Mar	Apr	May	Other	Season Total		Dec	Jan	Feb	Mar	Apr	May	Other	Season Total
1987 Se	days, D	1 - May							1995 Season, 128 days, Dec 1 - Apr 30, 1 day per week off								
Maine	993	2,373	3,073	2,241	617	340	16	9,653	Maine	879	2,341	2,641	1,337	694			7,892
Mass.	325	354	414	426	283	317	164	2,283	Mass.	145	385	275	157	109			1,071
N.H.	67	164	175	95	28		32	561	N.H.	189	331	279	359	344			1,502
Total	1,385	2,891	3,662	2,762	928	657		12,285	Total	1,213	3,057	3,195	1,853	1,147			10,465
1988 Se	days, D	1 - May							1996 Season, 152 days, Dec 1-May 31, 1 day per week off								
Maine	972	2,183	2,720	1,231	193	122		7,421	Maine	1,341	2,030	3,190	1,461	444	457		8,923
Mass.	28	326	426	315	26	57		1,178	Mass.	299	248	325	269	106	126		1,373
N.H.	72	231	236	99	3			641	N.H.	331	311	389	248	155	61		1,495
Total	1,072	2,740	3,382	1,645	222	179		9,240	Total	1,971	2,589	3,904	1,978	705	644		11,791
1989 Se	days, D	1 - May							1997 Season, 156 days, Dec 1-May 31, two 5-day and four 4-day blocks off								
Maine	958	2,479	2,332	936	249	84		7,038	Maine	1,674	1,753	2,737	1,178	793	530		8,665
Mass.	103	479	402	254	297	102		1,637	Mass.	184	226	245	114	7	1		777
N.H.	120	369	312	69	16			886	N.H.	277	245	301	218	189	62		1,292
Total	1,181	3,327	3,046	1,259	562	186		9,561	Total	2,135	2,224	3,283	1,510	989	593		10,734
1990 Se	days, D	1 - May							1998 Season, 105 days, Dec 8-May 22, weekends off except Mar 14-15, Dec 25-31 and Mar 16-31 off.								
Maine	1,036	1,710	1,529	1,986	897	238		7,396	Maine	852	1,548	1,653	725	346	189		5,313
Mass.	147	459	273	202	175	118		1,374	Mass.	94	200	148	70	3	1		515
N.H.	178	363	284	157	6			988	N.H.	141	216	182	134	83	22		778
Total	1,361	2,532	2,086	2,345	1,078	356		9,758	Total	1,086	1,964	1,983	929	432	212		6,606
1991 Se	days, D	1 - May							1999 Season, 90 days, Dec 15 - May 25 , weekends, Dec $24-$ Jan 3, Jan 27-31, Feb 24-28, Mar 16-31, and Apr 29 - May 2 off.								
Maine	568	1,286	2,070	1,050	438	139		5,551	Maine	190	556	1,125	553	324	172		2,920
Mass.	264	416	401	231	154	147		1,613	Mass.	39	57	71	9	40			216
N.H.	279	285	135	82	22	1		804	N.H.	82	192	213	44	123	21		675
Total	1,111	1,987	2,606	1,363	614	287		7,968	Total	311	805	1,409	606	487	193		3,811
1992 Se	days, D	15 - May							2000 Season, 51 days, Jan 17 - Mar 15, Sundays off								
Maine	411	1,966	2,700	1,222	318	141		6,758	Maine		653	1,838	401				2,892
Mass.	59	337	145	101	41			683	Mass.		23	100	27				150
N.H.	96	153	76	29	3			357	N.H.		36	179	78				293
Total	566	2,456	2,921	1,352	362	141		7,798	Total		712	2,117	506				3,335
1993 Se	days, D	14 - Apri							2001 Season, 83 days, Jan 9 - Apr 30, Mar 18 - Apr 15 off, experimental offshore fishery in May								
Maine	249	1,102	1,777	1,032	227			4,387	Maine		1,531	1,230	116	39	6		2,922
Mass.	60	200	250	185	72			767	Mass.		111	47	11	1			170
N.H.	76	246	275	256	151			1,004	N.H.		305	145	27	30			507
Total	385	1,548	2,302	1,473	450			6,158	Total		1,947	1,422	154	70	6		3,599
1994 Season, 122 days, Dec 15 - Apr 15									2002 Season, 25 days, Feb 15 - Mar 11								
				1,065	122			4,681	MaineMass.			573	221			14	808
Mass.	58	152	147	83	15			455				13	9			1	22
N.H.	169	228	266	173	18			854	N.H.			126	53				179
Total	492	1,720	2,302	1,321	155			5,990	Total			712	283			15	1,010

Table 4 continued.

	Dec	Jan	Feb	Mar	Apr	May	Other	Season Total
2003 Season, 38 days, Jan 15 - Feb 27, Fridays off								
Maine		773	1,020				49	1,842
Mass.		35	39					74
N.H.		82	159					241
Total		890	1,218				49	2,157
2004 Season, 40days, Jan 19-Mar 12, Saturdays and Sundays off								
Maine	7	563	883	337	13	14	3	1,820
Mass.		9	31	8				48
N.H.		46	139	65				250
Total	7	618	1,053	410	13	14	3	2,118
2005 Season, 70 days, Dec 19-30, Fri-Sat off, Jan 3 - Mar 25, Sat-Sun off								
Maine	141	647	920	760				2,468
Mass.	12	18	49	23				102
N.H.	24	76	216	76				392
Total	177	741	1,185	859				2,962
2006 Season, 140 days, Dec 12 - Apr 30								
Maine	131	426	515	246	82			1,400
Mass.	10	12	14	12				48
N.H.	5	23	19	52	10			109
Total	146	461	548	310	92			1,557
2007 Season, 151 days, Dec 1 - Apr 30								
Maine	343	790	796	319	114	1	12	2,375
Mass.	3	1	8	7				19
N.H.	24	79	65	16	27			211
Total	370	870	869	342	141	1	12	2,605
*2008 Season, 152 days, Dec 1 - Apr 30								
Maine	397	1,021	1,393	656	53		1	3,521
Mass.	8	9	8	8				33
N.H.	63	140	125	33	5			366
Total	468	1,170	1,526	697	58			3,920
*2009 Season, 180 days, Dec 1 - May 29								
Maine	115	574	599	309	26	4		1,627
Mass.\& NH	16	80	58	2	1			157
Total	131	654	657	311	27			1,784

Table 5. Distribution of fishing trips in the Maine northern shrimp fishery by season, gear type, and month.

	Dec	Jan	Feb	Mar	Apr	May	Season		
							Other	Total	\% of total
2001									
Trawl		1,531	1,230	116	39	6		2,922	83\%
Trap		191	347	68	1			607	17\%
Total		1,722	1,577	184	40	6		3,529	
2002									
Trawl			573	221			14	808	77\%
Trap			193	55				248	23\%
Total			766	276			14	1,056	
2003									
Trawl		773	1,020				49	1,842	72\%
Trap		253	466					719	28\%
Total		1,026	1,486					2,561	
2004									
Trawl	7	563	883	337	13	14	3	1,820	83\%
Trap	0	75	210	90				375	17\%
Total	7	638	1,093	427	13	14	3	2,195	
2005									
Trawl	141	647	920	760				2,468	75\%
Trap		20	352	469				841	25\%
Total	141	667	1,272	1,229				3,309	
2006									
Trawl	131	426	515	246	82			1,400	66\%
Trap	3	90	375	257	12			737	34\%
Total	134	516	890	503	94			2,137	
2007									
Trawl	343	790	796	319	114	1	12	2,375	69\%
Trap	12	129	589	320	17			1,067	31\%
Total	355	919	1,385	639	131	1	12	3,442	
*2008									
Trawl	397	1,021	1,393	656	53		1	3,521	69\%
Trap	4	221	674	616	51			1,566	31\%
Total	401	1,242	2,067	1,272	104	0		5,086	
*2009									
Trawl	115	574	599	309	26	4		1,627	67\%
Trap	4	74	389	316	16			799	33\%
Total	119	648	988	625	42	4		2,426	

Table 6. Estimated numbers of vessels in the Gulf of Maine northern shrimp fishery by season and state.

Season	Maine	Massachusetts	New Hampshire	Total
1980	15-20	15-20		30-40
1981	~ 75	-20-25		~100
1982	>75	-20-25		>100
1983	~ 164	-25	-5-8	~ 197
1984	239	43	6	288
1985	~231	~ 40	~ 17	~300
1986				-300
1987	289	39	17	345
1988	-290	~ 70	-30	~390
1989	-230	~ 50	-30	-310
1990	-220			~250
1991	~200	-30	~20	~250
1992	-259	~ 50	16	~325
1993	192	52	29	273
1994	178	40	29	247
1995				
1996	275	43	29	347
1997	238	32	41	311
1998	195	33	32	260
1999	181	27	30	238
2000	249	15	23	287
2001	235	25	28	288
2002	167	8	23	198
2003	213	12	23	248
2004	169	7	15	191
2005	167	9	22	198
2006	126	5	11	142
2007	177	3	15	195
*2008	221	4	15	240
*2009	137	1	11	149

Table 7. Gulf of Maine northern shrimp trawl catch rates by season. Mean CPUE in lbs/hour towed is from Maine port sampling. Mean catch in lbs/trip is from NMFS weighout and logbook data for trawl catches for all states.

Season	Maine pounds per hour towing			Pounds/trip
	Inshore (<55F)	Offshore ($>55 \mathrm{~F}$)	Combined	
1991	94	152	140	988
1992	132	93	117	974
1993	82	129	92	767
1994	139	149	141	1,073
1995	172	205	193	1,362
1996	340	203	251	1,714
1997	206	192	194	1,454
1998	158	151	154	1,317
1999	148	147	147	1,067
2000	279	224	272	1,444
2001	100	135	109	740
2002	223	91	194	831
2003	174	215	182	1,029
2004	361	310	351	1,955
2005	235	212	228	1,608
2006	572	345	499	2,562
2007	531	477	507	3,026
*2008	350	327	343	2,319
*2009	400	315	370	2,246

[^0]Table 8. Stratified retransformed mean weights per tow of northern shrimp collected during the Maine - New Hampshire inshore trawl surveys by year, regions 1-4 (NH to Mt Desert) and depths 3-4 (> 35 fa.) only, with number of tows (n) and 80\% confidence intervals.

	Spring				Fall			
	kg/tow	$\underline{\square}$	80\% CI		kg/tow	$\underline{\square}$		
2003	4.16	40	3.40	5.05	1.91	33	1.35	2.60
2004	3.87	42	3.31	4.51	1.53	38	1.04	2.14
2005	7.81	40	6.60	9.21	3.59	25	2.46	5.10
2006	10.99	46	8.50	14.13	2.06	38	1.43	2.84
2007	10.70	43	7.93	14.33	4.04	45	3.15	5.13
2008	15.42	45	12.72	18.64	3.59	37	2.32	5.36
*2009	9.64	45	7.66	12.07				

[^1]Table 9. Stratified* retransformed mean numbers and weights per tow of northern shrimp collected during R/V Gloria Michelle state/federal summer surveys.

*Based on strata 1, 3, 5, 6, 7 and 8.
**W ill be fully recruited to the winter fishery.

Table 10. Summary of results from CSA analysis, Gulf of Maine northern shrimp.

Fishing Season	New Recruits (millions)	FullyRecruited (millions)	$\underline{F(N R+F R)}$	$\begin{array}{r} \text { Biomass } \\ (1000 \mathrm{mt}) \\ \hline \end{array}$	Exploitation $\underline{\text { Rate }}$
1985	792	851	0.28	12.01	21\%
1986	841	970	0.25	15.43	20\%
1987	665	1,094	0.32	16.05	24\%
1988	547	998	0.18	14.19	15\%
1989	703	1,003	0.21	12.04	16\%
1990	827	1,080	0.30	14.67	23\%
1991	557	1,098	0.25	15.69	19\%
1992	425	1,008	0.23	13.88	18\%
1993	384	886	0.19	11.61	15\%
1994	597	818	0.24	9.54	19\%
1995	822	865	0.52	11.95	36\%
1996	947	778	0.73	13.81	46\%
1997	573	650	1.03	10.15	57\%
1998	473	340	0.72	5.73	46\%
1999	352	309	0.45	4.75	32\%
2000	263	327	0.50	4.78	35\%
2001	353	278	0.29	4.51	22\%
2002	259	368	0.08	4.79	7\%
2003	605	449	0.13	6.08	10\%
2004	389	721	0.22	8.08	18\%
2005	694	691	0.21	11.40	16\%
2006	1,834	875	0.08	17.36	7\%
2007	1,767	1,941	0.15	26.87	12\%
2008	426	2,494	0.21	24.79	16\%
2009	727	1,847	0.08	23.63	7\%
2010	776	1,844		24.22	
Overall average	676.77	945.6	0.31	13.0	22\%
1985-94 average	633.60	980.6	0.24	13.5	19\%

Table 11. Summary of results from surplus production analysis, Gulf of Maine northern shrimp.

Survey Year	$\begin{array}{r} \text { Fall } \\ \text { (kg/tow) } \end{array}$	$\begin{array}{r} \text { Maine } \\ \text { (kg/tow) } \end{array}$	Summer (kg/tow)	$\begin{array}{\|c\|} \hline \text { Spring ME/NH } \\ \text { (kg/tow) } \end{array}$	$\begin{aligned} & \text { Catch } \\ & (\mathrm{mt}) \end{aligned}$	$\begin{gathered} \hline \text { Biomass } \\ (\mathrm{mt}) \end{gathered}$	F	B/Bmsy	F/Fmsy
1968	3.20	45.80			5708	41.86	0.14	1.27	0.78
1969	2.70	31.20			12136	41.55	0.32	1.26	1.81
1970	3.70	40.80			11330	35.05	0.35	1.07	2.00
1971	3.00	9.40			10594	29.51	0.39	0.90	2.24
1972	3.30	7.00			11224	24.52	0.53	0.75	3.00
1973	1.90	7.80			9691	18.35	0.63	0.56	3.58
1974	0.80	4.90			8024	12.80	0.80	0.39	4.53
1975	0.90	6.70			6142	7.76	1.18	0.24	6.68
1976	0.60	4.80			1387	3.31	0.44	0.10	2.51
1977	0.20	1.60			372	2.97	0.11	0.09	0.63
1978	0.40	3.20			17	3.72	0.00	0.11	0.02
1979	0.50	4.40			487	5.14	0.08	0.16	0.47
1980	0.50	2.70			339	6.52	0.05	0.20	0.26
1981	1.50	3.00			1071	8.52	0.11	0.26	0.65
1982	0.30	2.00			1530	10.29	0.14	0.31	0.78
1983	1.00	4.20			1397	12.02	0.11	0.37	0.60
1984	1.90		10.47		2951	14.33	0.20	0.44	1.12
1985	1.60		17.69		4131	15.44	0.27	0.47	1.52
1986	2.50		19.61		4635	15.48	0.30	0.47	1.73
1987	1.70		15.40		5253	14.97	0.37	0.46	2.08
1988	1.20		12.76		3031	13.67	0.22	0.42	1.22
1989	1.81		16.95		3315	14.55	0.22	0.44	1.26
1990	2.04		18.12		4665	15.30	0.31	0.46	1.76
1991	0.44		11.68		3571	14.72	0.24	0.45	1.35
1992	0.41		9.43		3444	15.23	0.22	0.46	1.25
1993	1.85		9.14		2143	15.98	0.13	0.49	0.71
1994	2.24		8.69		2915	18.31	0.15	0.56	0.86
1995	1.22		13.29		6466	20.20	0.33	0.61	1.90
1996	0.90		8.77		9166	18.55	0.58	0.56	3.26
1997	1.12		7.73		7079	13.63	0.61	0.41	3.44
1998	1.99		6.33		4174	9.93	0.45	0.30	2.57
1999	2.32		5.78		1816	8.54	0.20	0.26	1.14
2000	1.28		6.39		2389	9.47	0.25	0.29	1.39
2001	0.63		4.33		1329	10.00	0.12	0.30	0.69
2002	1.70		9.16		424	11.89	0.03	0.36	0.18
2003	1.08		5.45	4.16	1211	15.25	0.07	0.46	0.41
2004	1.58		10.27	3.87	1945	18.45	0.10	0.56	0.55
2005	2.77		23.38	7.81	2557	21.39	0.11	0.65	0.64
2006	6.64		65.99	10.99	2081	24.08	0.08	0.73	0.46
2007	4.13		11.51	10.70	4060	27.53	0.14	0.84	0.81
2008	3.05		16.77	15.42	4912	29.16	0.17	0.89	0.94
2009	n/a		15.44	9.64	2163	30.00	0.07	0.91	0.39
2010						33.62		1.02	
Average	1.77		13.87	8.94	4126	16.67	0.27		
* preliminary data			1971-74 average:			21.30	0.59		
			1985-94 average:			15.37	0.24		
			2007-09 (3-yr) average			28.90	0.13		

Table 12. Yield and egg production per recruit of Gulf of Maine northern shrimp, for an example fishing mortality $F=0.20$, natural mortality $M=0.25$, and 1,000 age 0 recruits.

Input Data						
Age	Length (mm)	Transition Rate (\% Fem)	Fishery Selectivity	Male wt (g)	Female wt (g)	Fecundity at length
1	11.17	0	0.033	0.84	1.24	0
2	18.43	0	0.230	3.79	4.82	0
3	23.50	0.081	0.579	7.87	9.30	1,286
4	27.04	0.922	0.799	12.00	13.58	1,876
5	29.51	0.997	0.893	15.60	17.19	2,287
6	31.23	1.000	0.933	18.50	20.04	2,574
7	32.43	1.000	1.000	20.72	22.19	2,775

Results						
Total	Male	Female	Male	Female	Yield	Egg
N	N	N	Catch	Catch	(g)	Production
774	774	0	4	0	4	0
575	575	0	31	0	117	0
399	367	32	56	0	439	41,581
265	21	244	48	4	635	458,156
173	0	172	3	35	657	393,661
112	0	111	0	26	523	287,027
71	0	71	0	18	399	197,299
totaltotal/recruit					2,773	1,377,725
					2.773	1,378
\% of max						57.52

Ref. Point	F	YPR	\%EPR
$\mathrm{F}_{\text {max }}$	0.77	4.25	14.77
$\mathrm{F}_{0.1}$	0.46	3.99	29.83
$\mathrm{F}_{\text {example }}$	0.20	2.77	57.52
$\mathrm{F}_{50 \%}$	0.25	3.14	50
$\mathrm{F}_{40 \%}$	0.34	3.62	40
$\mathrm{F}_{30 \%}$	0.45	3.97	30
$\mathrm{F}_{20 \%}$	0.63	4.21	20
$\mathrm{F}_{10 \%}$	0.95	4.21	10

	Count per pound	
Age	Male	Female
1	540	366
2	120	94
3	58	49
4	38	33
5	29	26
6	25	23
7	22	20

Figure 1. Gulf of Maine northern shrimp landings by season and state. MA landings are included in NH landings in 2009.

\square Male \& juv \square Transitionals \square Female $1 \square$ Ovigerous \square Female 2

Figure 2. Gulf of Maine northern shrimp landings by month in the 2009 season.
Landings are in metric tons by state (above), and in millions of shrimp by development stage (below).

Figure 3. Relative length-frequency distributions from samples of Maine northern shrimp catches during the 2009 season by month, trawl catches on the left and trap catches on the right. Landings are preliminary.

March, 1 Sample, Landings $=1.2 \mathrm{mt}$

April, No Samples, Landings $\mathbf{=} \mathbf{2 . 6} \mathbf{~ m t}$
May, No Samples, No Landings
Figure 4. Relative length-frequency distributions from samples of New Hampshire northern shrimp catches during the 2009 season by month. Landings are preliminary.

Figure 5. Gulf of Maine northern shrimp landings in estimated numbers of shrimp, by length, development stage, and fishing season. Landings are preliminary throughout.

Figure 5 continued.

Figure 5 continued.

Figure 5 continued.

Figure 5 continued.

Figure 6. Nominal fishing effort (trawl trips) (above) and catch per unit effort (below), in the Gulf of Maine northern shrimp fishery by season. 2008 and 2009 data are preliminary.

Dot density symbols (red dots) were used to display pounds caught per Ten Minute Square (TMS). Each dot represents 950 lbs , the median value of pounds landed per trip across all years, therefore squares with more dots reported higher landings. Effort or number of trips per TMS are displayed in the background as the blue color palette.

Figure 7. Pounds caught and numbers of trips during the 2009 northern shrimp fishing season by 10 -minute-square. Each red dot represents 950 lbs caught; locations of dots within squares are random and do not reflect the actual location of the catch. Number of trips is indicated by the blue palette for the squares. From preliminary harvester logbook (VTR) data; does not include Maine non-federally-permitted vessel trips and catches.

Figure 8a. Maine-New Hampshire inshore trawl survey depths and regions.

State/federal northern shrimp survey aboard the RFN Gloria Michelle 2009, statistical strata and survey sites with catches where successful tows were completed.

Figure 8b. State/federal northern shrimp survey aboard the \boldsymbol{R} / V Gloria Michelle, July 12 August 8, 2009; statistical strata and survey sites with catches (kg/tow).

Northern shrimp survey strata and observed distribution of catch per tow (kg) of northern shrimp collected during the 2008 Fall Bottom Trawl Survey in the western Gulf of Maine region aboard the RN Albatross IV.

Figure 8c.

Figure 9. Fall trawl survey index and Gulf of Maine northern shrimp landings the following season.

Figure 10. Maine-New Hampshire inshore trawl survey northern shrimp biomass indices, spring above and fall below. *2009 data are preliminary.

Figure 11. Gulf of Maine northern shrimp 2009 summer survey indices of abundance (left) and biomass (right), by survey year.

Figure 12. Gulf of Maine northern shrimp summer survey mean catch per tow by year, length, and development stage. Two-digit years are year class at assumed age 1.5.

Figure 12 continued.

Figure 12 continued.

Figure 12 continued.

Figure 12 continued.

Figure 13. Fishing mortality, abundance, and biomass of Gulf of Maine northern shrimp as estimated by CSA, with least squares estimates, bootstrapped medians (square symbols), and $\mathbf{8 0 \%}$ confidence intervals.

Figure 13 continued.

Input Data using Summer Survey			
Survey Year*	Indices of Abundance		
	Recuits	Full Recruits	Millions*
1984	447.6	479.1	352.79
1985	611.5	913.6	361.17
1986	533.3	848.5	425.29
1987	482.9	766.9	228.43
1988	459.8	387.7	283.65
1989	701.1	817.9	442.43
1990	511.5	907.5	320.29
1991	374.3	612.1	262.43
1992	313.6	444.4	194.79
1993	410.2	320.8	270.41
1994	368.6	364.3	615.32
1995	485.8	653.3	799.37
1996	257.7	348.6	710.97
1997	257.3	267.1	373.68
1998	217.1	226.6	215.12
1999	137.4	174.6	209.28
2000	276.3	288.2	140.88
2001	171.8	196.4	44.40
2002	550.6	372.9	113.66
2003	222.9	229.9	198.34
2004	292.7	405.9	231.71
2005	1295.2	1231.7	192.22
2006	3878.3	4024.4	447.67
2007	323.2	421.0	487.38
2008	561.7	847.3	183.15
2009	514.5	722.4	

Results			
Stock Size Estimates millions at time of Survey		Fishing Mortality	Total Mortality Z all sizes
Recruits		Full Recruits	All sizes

Figure 14. Catch-Survey model (CSA) input data and results.

Figure 15. Estimates of fishing mortality (above) and stock biomass (below) for northern shrimp from Collie-Sissenwine analysis (CSA) and surplus production (ASPIC) modeling.

Figure 16. Biomass dynamics of the Gulf of Maine northern shrimp fishery, from surplus production (ASPIC) (above) and Collie-Sissenwine (CSA) (below) analyses, with possible fishing mortality and biomass reference points.

Figure 17. Yield and egg production per recruit for Gulf of Maine northern shrimp.

Figure 18. Relationship between summer survey index of Gulf of Maine female northern shrimp biomass the summer before spawning to age 1.5 abundance two years later. Two-digit numbers indicate the assumed age 1.5 year class.

Figure 19. Sea surface (above) and sea bottom (below) temperatures in Boothbay Harbor, Maine.

Appendix A

NATURAL MORTALITY

As mentioned above, natural mortality (M) was assumed to be 0.25 , as approximated from the intercept of a regression of total mortality on effort (Rinaldo 1973, Shumway et al. 1985), as well as an estimate of Z for age- $2+$ shrimp from visual inspection of length modes from the Maine summer survey which was 0.17 from 1977 to 1978, when the fishery was closed (Clark 1981, 1982). These values, however, suggest, for the US GOM population as a whole, that M is low relative to estimates for other Pandalus stocks, which range from 0.2 to 1.0 (ICES 1977, Abramson 1980, Frechette and Labonte 1980, Shumway et al. 1985). Additionally, the value seems too low for a short-lived species.

The recent SARC (NEFSC 2007) recommended further investigations into the possibility of higher values for M to be used to describe the status of the US northern shrimp resource. To date, the only work has been to view the implications as expressed in terms of CSA analyses. The SARC report includes preliminary work done to examine CSA estimates of biomass to estimates of biomass consumed by predators. These preliminary analyses indicate that CSA estimates of biomass are substantially less than the estimated biomass consumed by predators.

The current assessment model (CSA) was run under the assumptions of several levels of M ($0.25,0.40$ and 0.60). The results are presented in Figure A1. When M is increased, the fishing mortality decreases. For this to occur, abundance and biomass increase as well. This process suggests better agreement between the CSA results and those of the predation studies. One problem, however, is that as M increases, F decreases to very small values. While this may be real, it becomes difficult for the current models to be able to fit these conditions. As a result, model fit, as described by confidence intervals and CV's indicate an increase in the analytical uncertainty. However, the response of the resource biomass to the resultant estimated fishing mortality for various levels of M indicated little change in terms of the current reference points.

It would be beneficial to continue investigations regarding this component of northern shrimp stock status.

AdDITIONAL REFERENCES

Abramson, N. 1980. Current stock assessment panel. In Proceedings of the International Pandalid Shrimp Symposium. Univ. Alaska Sea Grant Rep. 81-3: 259-275.

Frechette, J. and S.S.M. Labonte. 1980. Biomass estimate, year-class abundance and mortality rates of Pandalus borealis in the northwest Gulf of St. Lawrence. In Proceedings of the International Pandalid Shrimp Symposium. Univ. Alaska Sea Grant Rep. 81-3: 307-330

ICES (International Council for the Exploration of the Sea). 1977. Report of the working group on assessment of Pandalus borealis stocks. ICES C.M. K:10.

Link, J.S and J.S. Idoine. 2009. Estimates of predator consumption of the northern shrimp Pandalus borealis with implications for estimates of population biomass in the Gulf of Maine. N. Am. J. of Fish. Man. 29:6, 1567-1583.

Rinaldo, R.G. 1973. Northern shrimp - assessment of some population parameters. Maine Dept. Marine Resources. Comm. Fish. Res. Dev. Proj. 3-189-R.

NEFSC. 2007. 45th Northeast Regional Stock Assessment Workshop (45th SAW). 2007. 45th SAW assessment summary report. US Dep Commer, Northeast Fish Sci Cent Ref Doc. 07-11; 37 p.

Shumway, S.E., H.C. Perkins, D.F. Schick, and A.P. Stickney. 1985. Synopsis of biological data on the pink shrimp Pandalus borealis Krøyer, 1838. NOAA Technical Report NMFS 30, 57p.

Figure A1. Biomass (above) and fishing mortality (below) of Gulf of Maine northern shrimp as estimated by CSA, assuming a natural mortality rate (M) of $\mathbf{0 . 2 5}$, 0.40 , and 0.60 .

[^0]: * Pounds/trip are preliminary

[^1]: *2009 data are preliminary.

