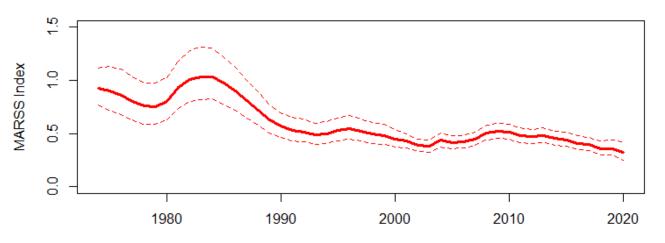
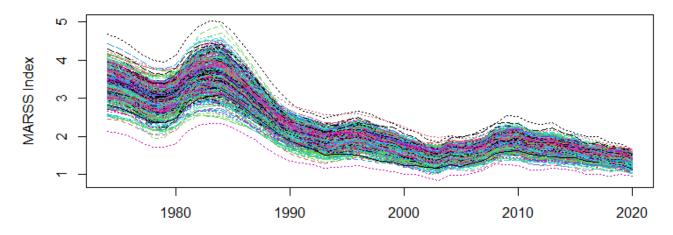


American Eel Supplemental Report to the 2022 Benchmark

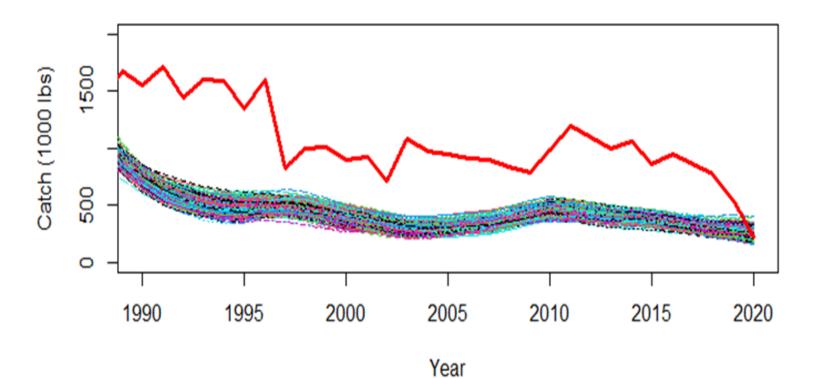
American Eel Board Meeting August 1, 2023

Background and SAS Tasks


- Peer Review:
 - Additional work is needed to establish threshold reference points in I_{TARGET} (use of MSE)
 - Stock is depleted, not overfished with likely overfishing
- American Eel Board:
 - Evaluate influence of individual surveys on coast-wide yellow eel index
 - Consider reference period and other configurations for I_{TARGET}
 - Usefulness of habitat model for future assessments


- <u>Goal</u>: Conduct simulations to determine how uncertainty in annual indices of abundance may influence the MARSS yellow eel index and how this may then influence recommended harvest by the *I*_{TARGET} method
- <u>Method</u>:
 - Simulations were conducted by randomly drawing a value for each fishery-independent survey for each year the survey was conducted from a normal distribution
 - MARSS index re-calculated, I_{TARGET} re-run

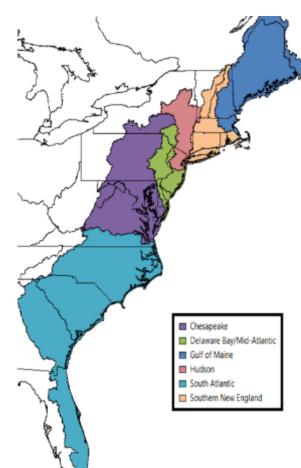
Base MARSS Index

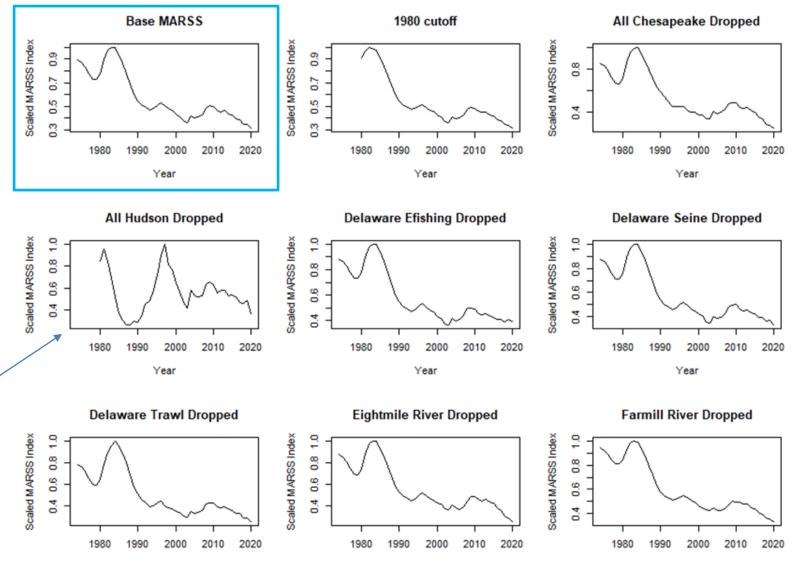


Simulated MARSS Indices

Tanta Bres comus

Observed catch versus Recommended Catch

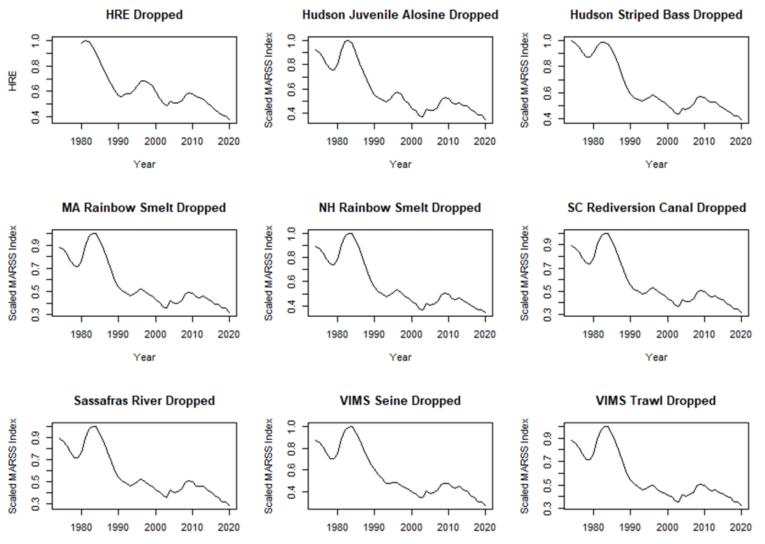




<u>Conclusions:</u>

- Resulting yellow eel trends very similar
- Recommended catch from I_{TARGET} very similar
 - Base MARSS: 202,453
 - Simulated MARSS: 255,285 pounds (95th percentile range: 190,411 337,171 pounds)
- Trends in the coastwide population of yellow eels based on the MARSS model and recommended catch of based on the I_{TARGET} method are robust to uncertainty in individual point estimates of relative abundance from fishery-independent surveys

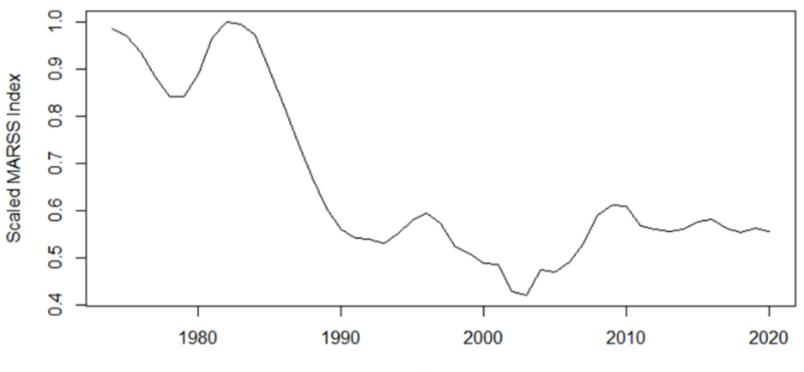
- <u>Goal</u>: To explore the influence of any one survey on the final MARSS model index (e.g., Hudson River)
- <u>Methods</u>: Conducted a sensitivity analysis in which each individual survey was omitted from the data one at a time and the MARSS model fit to the remaining surveys
 - Additional runs to drop entire regions (Hudson or CB) or include longest survey from each region


Year

Year

ANIC STATES MAR

THES COMMISS



Year

Year

Longest Time Series in Region

C STATES

Year

<u>Conclusions:</u>

- MARSS index can be influenced by the suite of surveys included and the length of their time series
- No single survey completely drives the trends in the final abundance index time series
 - Hudson River is a large system representing a significant portion of the coastwide stock and to completely exclude the Hudson River from the analysis seems inappropriate
- MARSS index is robust to deviations due to any single survey and it appears to be the best index of coastwide abundance of the species

Sensitivity Testing - Regime Shift Analysis

- <u>Goal</u>: To show the effects each survey had on the resulting abundance index trend for coastwide yellow eel and thus the choice of reference period in I_{TARGET} based on the regime shift analysis
- <u>Methods</u>: Use STARS to re-run regime shift analysis based on leave-one-out analysis

Sensitivity Testing - Regime Shift Analysis

AINE

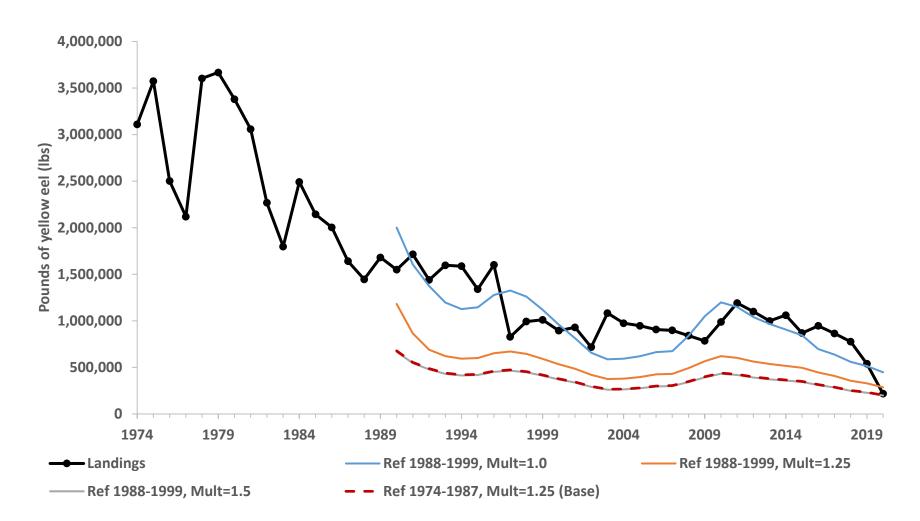
Sensitivity Run	Regimes	Same as Base	Same or Similar to Base +/- one year
Base	1974-1987, 1988-1999, 2000-2020	Х	Х
1980 Cutoff	1980-1986, 1987-1998, 1999-2020		Х
Drop MD Sassafras	1974-1987, 1988-1999, 2000-2020	x	Х
Drop VIMS Seine	1974-1987, 1988-1996, 1997-2020		
Drop VIMS Trawl	1974-1987, 1988-1999, 2000-2020	X	Х
Drop PA Area 6	1974-1987, 1988-1999, 2000-2020	x	Х
Drop NJ Delaware River Seine	1974-1987, 1988-1999, 2000-2020	x	Х
Drop DE Trawl	1974-1988, 1989-2020		X*
Drop MA Rainbow Smelt	1974-1987, 1988-1999, 2000-2020	X	Х
Drop NH Rainbow Smelt	1974-1987, 1988-1999, 2000-2020	X	Х
Drop HRE	1980-1985, 1986-2000, 2001-2020		
Drop Hudson River Alosine	1974-1986, 1987-1998, 1999-2020		Х
Drop Hudson Striped Bass Seine	1974-1986, 1987-1998, 1999-2020		Х
Drop CT Eightmile	1974-1987, 1988-2000, 2001-2020		Х
Drop CT Farmill	1974-1986, 1987-1998, 1999-2020		Х
Drop SC Redivision	1974-1987, 1988-1999, 2000-2020	x	Х
Drop All Hudson Indices	1980-1994, 1995-2020		
Drop All CB Indices	1974-1987, 1988-1996, 1997-2020		
Include Longest Survey from Each Region	1974-1985, 1986-1997, 1998-2007, 2008-2020		

Sensitivity Testing - Regime Shift Analysis

Conclusions:

- Omitting a single survey had little effect on the general pattern of the MARSS model index and therefore little effect on the regimes identified by STARS
- No one index is driving the trend
- Dropping all three Hudson River indices results in the largest difference

I_{TARGET} Configurations

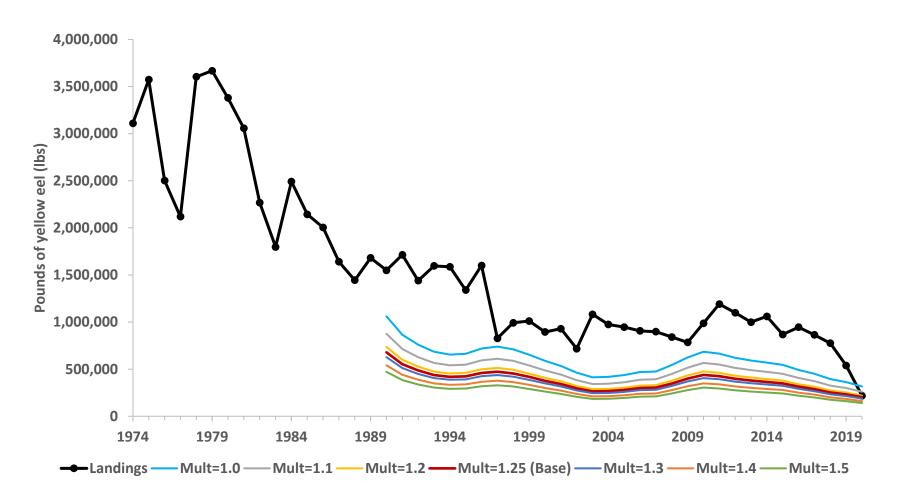

- Inputs:
 - Catch
 - Index (MARSS yellow eel)
- Specify:
 - Reference period
 - A stable or desirable period of abundance
 - Determined by regime shift analysis
 - Multiplier
 - Setting a desired level of abundance that management is trying to achieve
 - Threshold
 - Setting the desired level of fishing on the stock

ITARGET: Alt. Reference Period

STATES

COMM

• Explored 1988-1999 with other multipliers

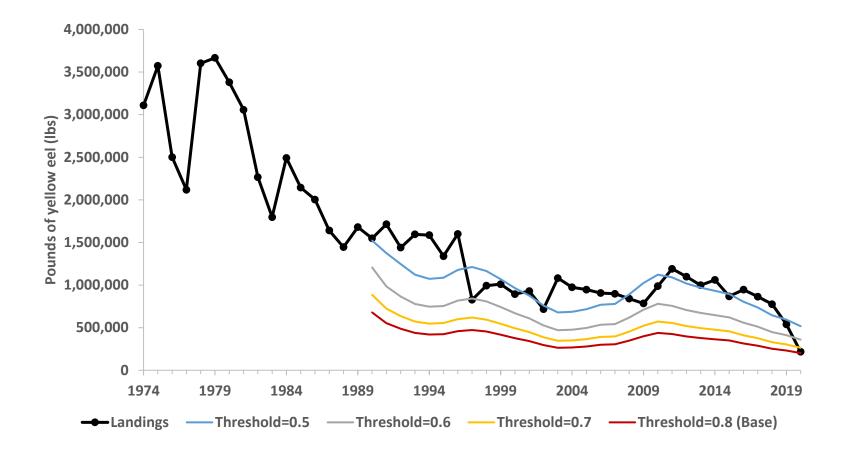


I_{TARGET}: Multiplier

STATES

COMM

• Explored 1.0-1.5 in 0.1 intervals



I_{TARGET}: Threshold

STATES

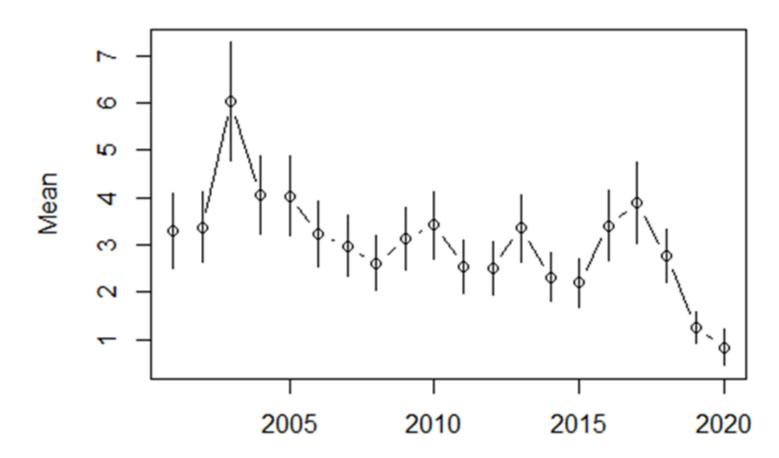
COMM

• Explored 0.5-0.8 in 0.1 intervals

I_{TARGET} Configurations

Reference Period	Multiplier Value	Threshold Value	Recommended 2020 Catch (lbs)
1974-1987 (Base)	1.25 (Base)	0.5	518,281
1974-1987 (Base)	1.25 (Base)	0.6	359,917
1974-1987 (Base)	1.25 (Base)	0.7	264,429
1974-1987 (Base)	1.25 (Base)	0.8 (Base)	202,453
1974-1987 (Base)	1.00	0.8 (Base)	316,334
1974-1987 (Base)	1.10	0.8 (Base)	261,433
1974-1987 (Base)	1.20	0.8 (Base)	219,676
1974-1987 (Base)	1.30	0.8 (Base)	187,180
1974-1987 (Base)	1.40	0.8 (Base)	161,395
1974-1987 (Base)	1.50	0.8 (Base)	140,593
1988-1999	1.00	0.8 (Base)	448,049
1988-1999	1.25 (Base)	0.8 (Base)	286,751
1988-1999	1.50	0.8 (Base)	199,133

• <u>Conclusions</u>:

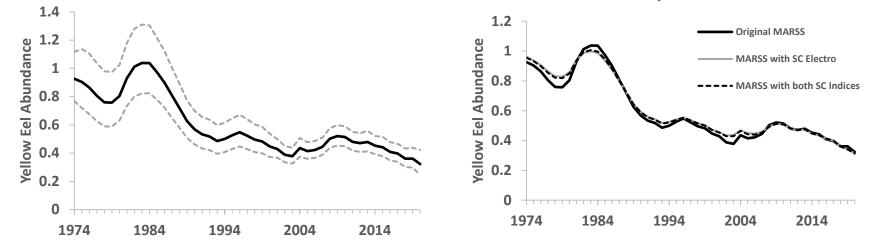

- Should be discussed by a PDT if the Board accepts the assessment
- Majority of SAS support a 1974-1987 reference period and 1.25 multiplier
- Choice for threshold (0.5-0.8) should reflect goals of the fishery

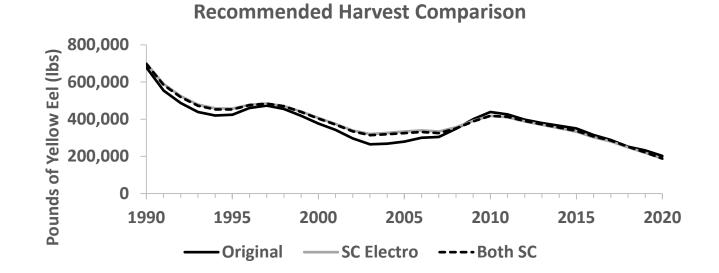
I_{TARGET} Predictions

- Can I_{TARGET} make predictions on abundance increases in response to harvest reductions?
 - No, it cannot be used to forecast or project under different harvest scenarios
 - Data-limited tool
 - Does not include population parameters (growth, mortality, recruitment)

Omitted SC DNR Electrofishing Survey

- Inadvertently omitted from the Assessment
- Met criteria for data collection


Omitted SC DNR Electrofishing Survey


Original MARSS Index

C STATES

RIES COM

Habitat Modelling

- How will having a habitat model help in future assessments?
 - Data limitations restrict the development of a coastwide habitat model, but advances in modeling may help in the future.
 - Recent advances in geospatial predictor datasets may help quantify river, stream, lake habitat area, volume, connectivity
 - Could use EPR to link escapement of inland past dams to reproductive output

Stock Status

- 2022 assessment determined stock was overfished and likely experiencing overfishing
- PR panel disagreed, depleted
- Based on the definitions of depleted, overfishing, and overfished, the American eel stock is <u>depleted</u> and coastwide catch should be decreased. If reference points are established through the use of I_{TARGET}, overfished and overfishing statuses could be determined.

Response to MSE

- Tight States Comment
- Simulation approach within MSE requires underlying knowledge of important population parameters (i.e., recruitment, natural mortality, intrinsic growth)
- *I*_{TARGET} and other index-based methods were simulation tested across various life-history strategies
- Building the simulation and testing parameters would require extensive analysis, vetting, time
- Should be a long-term research and modeling objective

SUMMARY

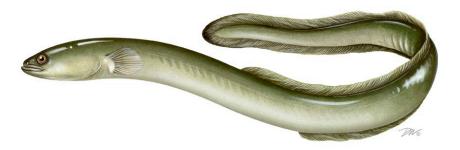
- Parties comus
- The simulated MARSS model fits were similar to fits in the 2022 stock assessment report
- Omitting a single survey from the MARSS index had little effect on the general coastwide abundance pattern, regimes identified, or reference period for I_{TARGET}
- Omitting all three Hudson River surveys (not recommended) shortens the time series and results in the largest change to the MARSS index and identified regimes

SUMMARY

- THE STATES AFA
- Changing the threshold value in I_{TARGET} results in recommended catches from 202,453 – 518,281 lbs.
 - Choice of configuration should be determined by a Plan Development Team through a management document to reflect the goals of the fishery
 - SAS does not recommend changing multiplier or reference period (only threshold)
- Population projections are not possible using the index-based method, I_{TARGET}

SUMMARY

- Data limitations restrict development of a coastwide habitat model; future modeling advances may help
- An MSE could be considered during the next benchmark, but in the meantime the I_{TARGET} tool can be used for management because it was designed for when traditional assessment models fail
- SAS agrees with PR that American eel stock is depleted, coastwide catch should be decreased
- If reference points are established through I_{TARGET}, overfishing and overfished statuses could be determined


Yellow Eel Indices

State	Site	Gear	Model	Years of Survey	Trend
NH	Rainbow Smelt Fyke Net Survey	Fyke Net	NB GLM year+temp+river	2010-2020	NS
MA	Rainbow Smelt Fyke Net Survey	Fyke Net	NB GLM year+temp+offset(effort)	2004-2019	NS
СТ	Farmill River	Electrofishing	Population estimate	2001-2012, 2014	NS
СТ	Eightmile River	Electrofishing	Population estimate	2001-2003, 2005- 2017, 2019	NS
NY	HRE Monitoring	Epibenthic sled & tucker trawl	Quasi-poisson GLM year+temp+river mile+water volume	1974-2017	¥
NY	Hudson Juvenile Alosine	Beach Seine	NB GLM year+station+temp	1985-2019	$\mathbf{+}$
NY	Hudson Juv Striped Bass	Beach Seine	NB GLM year+station+temp	1980-2019	↓
NJ	Delaware River Seine	Seine	NB GLM year+station+temp	1998-2019	NS
DE	Delaware Juvenile Trawl	Trawl	Nominal index with delta distribution	1980-2019	NS
PA	Delaware River Area 6	Electrofishing	Nominal	2005-2020	\bullet
MD	Sassafras River	Pot	Nominal	2006-2019	↑
VA	VIMS Trawl Survey	Trawl	NB GLM year+salinity+offset(effort)	1996-2019	NS
VA	VIMS Seine Survey	Seine	NB GLM year+salinity	1989-2019	1
SC	Rediversion canal	Aluminum ladder	Quasi-poisson GLM year+temp+gear condition	2003, 2005-2007, 2009-2020	NS

Addendum V Glass Eel Quota Provision

American Eel Management Board August 1, 2023

Addendum V Provision

Maine glass eel quota = 9,688 lbs
 Based on 2014 Maine landings

 In 2021, Board extended this quota through 2024

 A new addendum is required to set the Maine glass eel quota beyond 2024

Board Action

 Consider initiating an addendum to establish a glass eel quota for Maine for 2025 and beyond

Questions ?

The American Eel

DMR Life Cycle Study

Prepared by Jason Bartlett and Casey Clark Marine Scientist, Department of Marine Resources

Sampling-West Harbor Pond

Glass eels

This part of the study was initiated in 2001 per ASMFC requirements for a Young-of-Year (YOY) study.

Yellow eels

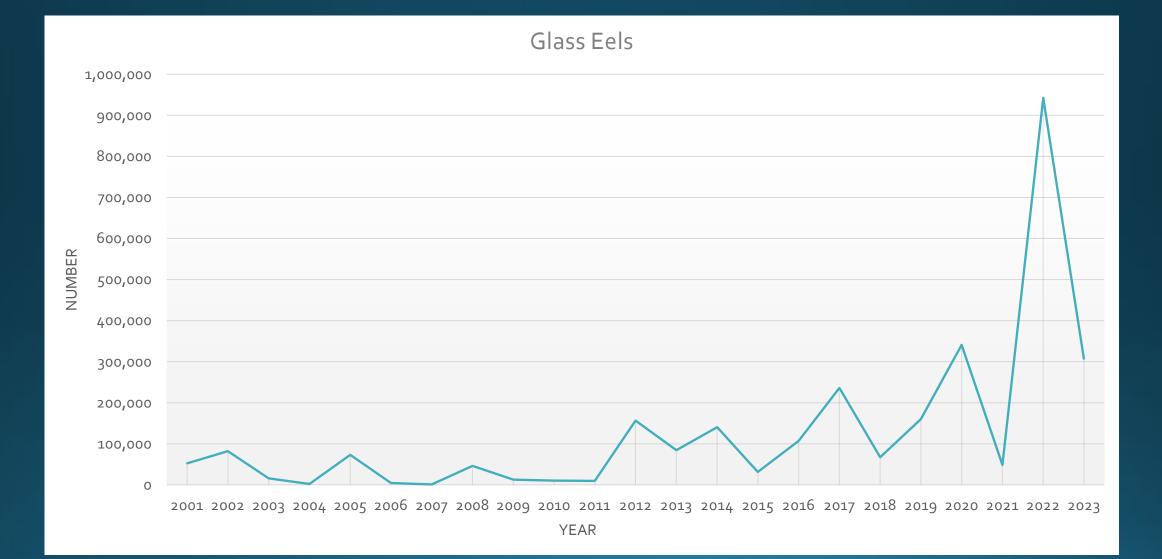
Pot fishing to sample yellow eels was initiated in 2018 as part of the Life Cycle study.

Silver eels

Fyke net sampling to collect out-migrating silver eels was also initiated in 2018 as part of the Life Cycle study.

Glass Eels

- Sampling begins at approximately the same time the commercial season opens (March 24th) and continues through June.
- Two vertical ramps are attached to the dam at the outlet of West Harbor Pond.
- Fresh water is supplied to the ramps from early flood tide through late ebb tide.
- Eels ascend the ramps while the water is flowing and drop into boxes secured in the pond.
- Glass eels are separated from elvers, counted or weighed, and released into the pond.
- The number caught varies from year to year, with 2022 resulting in the largest catch since the study began.


Glass eels (cont.)

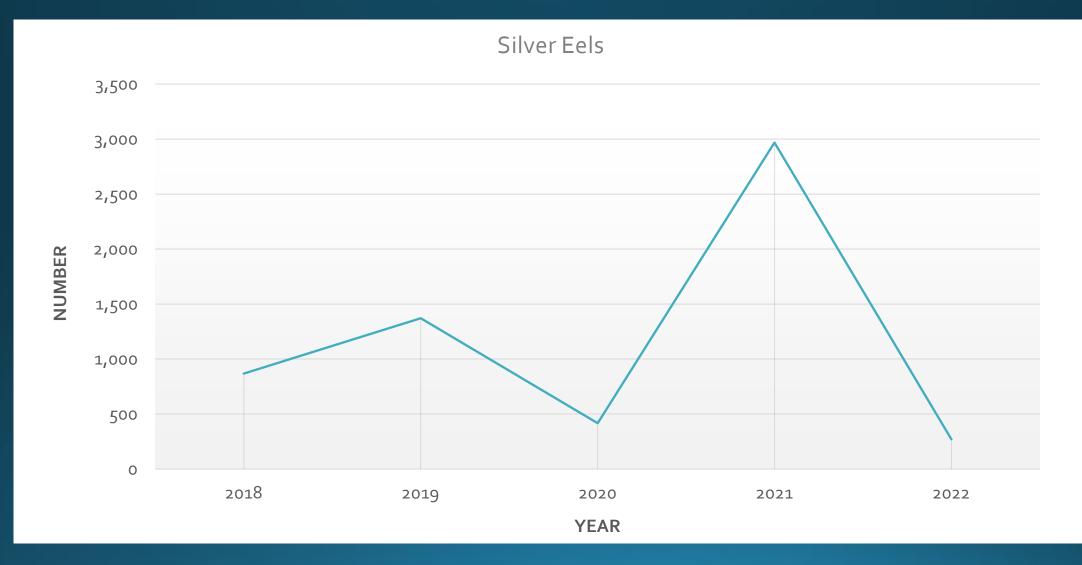
- Over the course of the sampling season, several 6o-fish subsamples are taken for individual measurements and pigment code determination.
- Average individual lengths and weights tend to decrease as the season progresses.

Glass Eel Length vs Weight

Number of Glass Eels Caught by Year

Yellow Eels

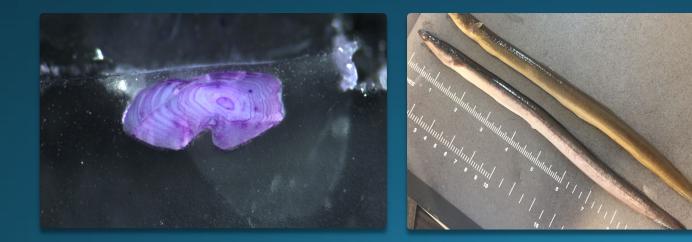
- Sampling with baited eel pots begins in July and continues through September.
- 24 pots are deployed every other week for 5 cycles at set locations around the pond. They are checked after 24 hours, rebaited, and deployed again for another 24 hours.
- Each time the pots are checked all eels are removed, measured for length and weight, tagged with a PIT tag if they don't already have one, and released.
- 1,019 yellow eels have been tagged to date. Most have been recaptured at least once.



Silver Eels

- A fyke net is set at the outlet of West Harbor Pond starting in September to catch outmigrating silver eels.
- Sampling continues until December, or when no more silver eels are caught.
- All eels are removed from the trap and scanned for PIT tags. A subsample of length and weight measurements are taken.
- Rain events trigger silver eels to migrate.
- To date 5,888 silver eels have been captured.

Number of Silver Eels Caught

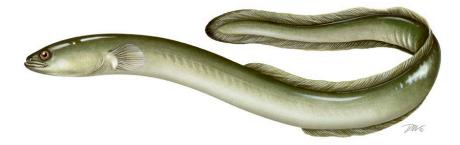

Ageing otoliths Average Length of Sw

 Otoliths are sectioned, polished, and stained to count the annuli.

• The average ages of silver eels leaving West Harbor Pond are- males 8 yrs, females 14 yrs. Average Length of silver eels

• The average lengths of silver eels leaving West Harbor Pond aremales 297 mm, females 443 mm. Swim Bladder Parasite

- The invasive eel parasite Anguillacoloides crassus is present in eels living in West Harbor Pond.
- Over 50% of the eels sampled are infected with this parasite.



Questions?

American Eel Aquaculture Proposals

American Eel Management Board August 1, 2023

Outline

- Background
- Maine Proposal
- Technical Committee Review
- Questions

Background

- Aquaculture provision established through Addendum IV

 Maintained by Addendum V
- States and jurisdictions can develop Plans for domestic aquaculture
 - Under an approved Aquaculture Plan, states and jurisdictions can harvest a maximum of 200 pounds of glass eel per year

Maine Proposal

Maine has utilized aquaculture quota since 2019

2019	2020	2021	2022	2023
130.5	0	138.91	200	200

- 2023 Summary
 - Same harvest locations as previous years, plus new harvests in the Union River, Passagassawakeag River, and St. Croix River
 - Increased CPUEs in 2022 and 2023

Maine Proposal

- 2024 Proposal
 - -No changes in facility or monitoring
 - American Unagi requests to harvest full
 200 lbs allocation

TC Summary

- ME Proposal: No concerns
- TC recommended approval of the proposal

Questions?