American Eel Supplemental Report to the 2022 Benchmark

American Eel Board Meeting
August 1, 2023

Background and SAS Tasks

- Peer Review:
- Additional work is needed to establish threshold reference points in $I_{\text {TARGET }}$ (use of MSE)
- Stock is depleted, not overfished with likely overfishing
- American Eel Board:
- Evaluate influence of individual surveys on coast-wide yellow eel index
- Consider reference period and other configurations for $I_{\text {target }}$
- Usefulness of habitat model for future assessments

Sensitivity Testing - MARSS Resampling

- Goal: Conduct simulations to determine how uncertainty in annual indices of abundance may influence the MARSS yellow eel index and how this may then influence recommended harvest by the $I_{\text {TARGET }}$ method
- Method:
- Simulations were conducted by randomly drawing a value for each fishery-independent survey for each year the survey was conducted from a normal distribution
- MARSS index re-calculated, $I_{\text {TARGET }}$ re-run

Sensitivity Testing - MARSS Resampling

Base MARSS Index

Simulated MARSS Indices

Sensitivity Testing - MARSS Resampling

Observed catch versus Recommended Catch

Sensitivity Testing - MARSS Resampling

- Conclusions:
- Resulting yellow eel trends very similar
- Recommended catch from $I_{\text {TARGet }}$ very similar
- Base MARSS: 202,453
- Simulated MARSS: 255,285 pounds (95 ${ }^{\text {th }}$ percentile range: 190,411-337,171 pounds)
- Trends in the coastwide population of yellow eels based on the MARSS model and recommended catch of based on the $I_{\text {TARGET }}$ method are robust to uncertainty in individual point estimates of relative abundance from fishery-independent surveys

Sensitivity Testing - Leave-One-Out

- Goal: To explore the influence of any one survey on the final MARSS model index (e.g., Hudson River)
- Methods: Conducted a sensitivity analysis in which each individual survey was omitted from the data one at a time and the MARSS model fit to the remaining surveys
- Additional runs to drop entire regions (Hudson or CB) or include longest survey from each region

Sensitivity Testing - Leave-One-Out

All Hudson Dropped

Delaware Trawl Dropped

1980 cutoff

Delaware Efishing Dropped

Eightmile River Dropped

All Chesapeake Dropped

Delaware Seine Dropped

Farmill River Dropped

Sensitivity Testing - Leave-One-Out

Sensitivity Testing - Leave-One-Out

Longest Time Series in Region

Sensitivity Testing - Leave-One-Out

- Conclusions:
- MARSS index can be influenced by the suite of surveys included and the length of their time series
- No single survey completely drives the trends in the final abundance index time series
- Hudson River is a large system representing a significant portion of the coastwide stock and to completely exclude the Hudson River from the analysis seems inappropriate
- MARSS index is robust to deviations due to any single survey and it appears to be the best index of coastwide abundance of the species

Sensitivity Testing - Regime Shift Analysis

- Goal: To show the effects each survey had on the resulting abundance index trend for coastwide yellow eel and thus the choice of reference period in $I_{\text {TARGET }}$ based on the regime shift analysis
- Methods: Use STARS to re-run regime shift analysis based on leave-one-out analysis

Sensitivity Testing - Regime Shift Analysis

Sensitivity Run	Regimes	Same as Base	Same or Similar to Base +/- one year
Base	1974-1987, 1988-1999, 2000-2020	X	X
1980 Cutoff	1980-1986, 1987-1998, 1999-2020		X
Drop MD Sassafras	1974-1987, 1988-1999, 2000-2020	X	X
Drop VIMS Seine	1974-1987, 1988-1996, 1997-2020		
Drop VIMS Trawl	1974-1987, 1988-1999, 2000-2020	X	X
Drop PA Area 6	1974-1987, 1988-1999, 2000-2020	X	X
Drop NJ Delaware River Seine	1974-1987, 1988-1999, 2000-2020	X	X
Drop DE Trawl	1974-1988, 1989-2020		X*
Drop MA Rainbow Smelt	1974-1987, 1988-1999, 2000-2020	X	X
Drop NH Rainbow Smelt	1974-1987, 1988-1999, 2000-2020	X	X
Drop HRE	1980-1985, 1986-2000, 2001-2020		
Drop Hudson River Alosine	1974-1986, 1987-1998, 1999-2020		X
Drop Hudson Striped Bass Seine	1974-1986, 1987-1998, 1999-2020		X
Drop CT Eightmile	1974-1987, 1988-2000, 2001-2020		X
Drop CT Farmill	1974-1986, 1987-1998, 1999-2020		X
Drop SC Redivision	1974-1987, 1988-1999, 2000-2020	X	X
Drop All Hudson Indices	1980-1994, 1995-2020		
Drop All CB Indices	1974-1987, 1988-1996, 1997-2020		
Include Longest Survey from Each Region	1974-1985, 1986-1997, 1998-2007, 2008-2020		

Sensitivity Testing - Regime Shift Analysis

- Conclusions:
- Omitting a single survey had little effect on the general pattern of the MARSS model index and therefore little effect on the regimes identified by STARS
- No one index is driving the trend
- Dropping all three Hudson River indices results in the largest difference

$I_{\text {TARGet }}$ Configurations

- Inputs:
- Catch
- Index (MARSS yellow eel)
- Specify:
- Reference period
- A stable or desirable period of abundance
- Determined by regime shift analysis
- Multiplier
- Setting a desired level of abundance that management is trying to achieve
- Threshold
- Setting the desired level of fishing on the stock

$I_{\text {target }}$: Alt. Reference Period

- Explored 1988-1999 with other multipliers

$I_{\text {TARGET }}:$ Multiplier

- Explored 1.0-1.5 in 0.1 intervals

$I_{\text {TARGET }}$: Threshold

- Explored 0.5-0.8 in 0.1 intervals

$I_{\text {TARGET }}$ Configurations

Reference Period	Multiplier Value	Threshold Value	Recommended 2020 Catch (Ibs)
$1974-1987$ (Base)	1.25 (Base)	0.5	518,281
$1974-1987$ (Base)	1.25 (Base)	0.6	359,917
$1974-1987$ (Base)	1.25 (Base)	0.7	264,429
$1974-1987$ (Base)	1.25 (Base)	0.8 (Base)	202,453
$1974-1987$ (Base)	1.00	0.8 (Base)	316,334
$1974-1987$ (Base)	1.10	0.8 (Base)	261,433
$1974-1987$ (Base)	1.20	0.8 (Base)	219,676
$1974-1987$ (Base)	1.30	0.8 (Base)	187,180
$1974-1987$ (Base)	1.40	0.8 (Base)	161,395
$1974-1987$ (Base)	1.50	0.8 (Base)	140,593
$1988-1999$	1.00	0.8 (Base)	448,049
$1988-1999$	1.25 (Base)	0.8 (Base)	286,751
$1988-1999$	1.50	0.8 (Base)	199,133

- Conclusions:
- Should be discussed by a PDT if the Board accepts the assessment
- Majority of SAS support a 1974-1987 reference period and 1.25 multiplier
- Choice for threshold (0.5-0.8) should reflect goals of the fishery

$I_{\text {TARGET }}$ Predictions

- Can $I_{\text {target }}$ make predictions on abundance increases in response to harvest reductions?
- No, it cannot be used to forecast or project under different harvest scenarios
- Data-limited tool
- Does not include population parameters (growth, mortality, recruitment)

Omitted SC DNR Electrofishing Survey

- Inadvertently omitted from the Assessment
- Met criteria for data collection

Omitted SC DNR Electrofishing Survey

Comparison

Recommended Harvest Comparison

Habitat Modelling

- How will having a habitat model help in future assessments?
- Data limitations restrict the development of a coastwide habitat model, but advances in modeling may help in the future.
- Recent advances in geospatial predictor datasets may help quantify river, stream, lake habitat area, volume, connectivity
- Could use EPR to link escapement of inland past dams to reproductive output

Stock Status

- 2022 assessment determined stock was overfished and likely experiencing overfishing
- PR panel disagreed, depleted
- Based on the definitions of depleted, overfishing, and overfished, the American eel stock is depleted and coastwide catch should be decreased. If reference points are established through the use of $I_{\text {TARGET }}$, overfished and overfishing statuses could be determined.

Response to MSE

- Simulation approach within MSE requires underlying knowledge of important population parameters (i.e., recruitment, natural mortality, intrinsic growth)
- $I_{\text {TARGET }}$ and other index-based methods were simulation tested across various life-history strategies
- Building the simulation and testing parameters would require extensive analysis, vetting, time
- Should be a long-term research and modeling objective
- The simulated MARSS model fits were similar to fits in the 2022 stock assessment report
- Omitting a single survey from the MARSS index had little effect on the general coastwide abundance pattern, regimes identified, or reference period for $I_{\text {target }}$
- Omitting all three Hudson River surveys (not recommended) shortens the time series and results in the largest change to the MARSS index and identified regimes
- Changing the threshold value in $I_{\text {target }}$ results in recommended catches from 202,453-518,281 lbs.
- Choice of configuration should be determined by a Plan Development Team through a management document to reflect the goals of the fishery
- SAS does not recommend changing multiplier or reference period (only threshold)
- Population projections are not possible using the index-based method, $I_{\text {TARGET }}$
- Data limitations restrict development of a coastwide habitat model; future modeling advances may help
- An MSE could be considered during the next benchmark, but in the meantime the $I_{\text {TARGET }}$ tool can be used for management because it was designed for when traditional assessment models fail
- SAS agrees with PR that American eel stock is depleted, coastwide catch should be decreased
- If reference points are established through $I_{\text {TARGET }}$ overfishing and overfished statuses could be determined

Yellow Eel Indices

State	Site	Gear	Model	Years of Survey	Trend
NH	Rainbow Smelt Fyke Net Survey	Fyke Net	NB GLM year+temp+river	$2010-2020$	NS
MA	Rainbow Smelt Fyke Net Survey	Fyke Net	NB GLM year+temp+offset(effort)	$2004-2019$	NS
CT	Farmill River	Electrofishing	Population estimate	$2001-2012,2014$	NS
CT	Eightmile River	Electrofishing	Population estimate	$2001-2003,2005-$ 2017,2019	NS
NY	HRE Monitoring	Epibenthic sled \& tucker trawl	Quasi-poisson GLM year+temp+river mile+water volume	$1974-2017$	\downarrow
NY	Hudson Juvenile Alosine	Beach Seine	NB GLM year+station+temp	$1985-2019$	\downarrow
NY	Hudson Juv Striped Bass	Beach Seine	NB GLM year+station+temp	$1980-2019$	\downarrow
NJ	Delaware River Seine	Seine	NB GLM year+station+temp	$1998-2019$	$1980-2019$

Addendum V

Glass Eel Quota Provision

American Eel Management Board August 1, 2023

- Maine glass eel quota $=9,688 \mathrm{lbs}$
-Based on 2014 Maine landings
- In 2021, Board extended this quota through 2024
- A new addendum is required to set the Maine glass eel quota beyond 2024

Board Action

- Consider initiating an addendum to establish a glass eel quota for Maine for 2025 and beyond

Questions ?

The American Eel

DMR Life Cycle Study
Prepared by Jason Bartlett and Casey Clark
Marine Scientist, Department of Marine Resources

Sampling-West Harbor Pond

Glass eels
This part of the study was initiated in 2001 per ASMFC requirements for a Young-of-Year (YOY) study.

Yellow eels

Pot fishing to sample yellow eels was initiated in 2018 as part of the Life Cycle study.

Silver eels
Fyke net sampling to collect out-migrating silver eels was also initiated in 2018 as part of the Life Cycle study.

Glass Eels

- Sampling begins at approximately the same time the commercial season opens (March $24^{\text {th }}$) and continues through June.
- Two vertical ramps are attached to the dam at the outlet of West Harbor Pond.
- Fresh water is supplied to the ramps from early flood tide through late ebb tide.
- Eels ascend the ramps while the water is flowing and drop into boxes secured in the pond.
- Glass eels are separated from elvers, counted or weighed, and released into the pond.
- The number caught varies from year to year, with 2022 resulting in the
 largest catch since the study began.

Glass eels (cont.)

- Over the course of the sampling season, several 6o-fish subsamples are taken for individual measurements and pigment code determination.
- Average individual lengths and weights tend to decrease as the season progresses.

Number of Glass Eels Caught by Year

Yellow Eels

- Sampling with baited eel pots begins in July and continues through September.
- 24 pots are deployed every other week for 5 cycles at set locations around the pond. They are checked after 24 hours, rebaited, and deployed again for another 24 hours.
- Each time the pots are checked all eels are removed, measured for length and weight, tagged with a PIT tag if they don't already have one, and released.
- 1,019 yellow eels have been
 tagged to date. Most have been recaptured at least once.

Silver Eels

- A fyke net is set at the outlet of West Harbor Pond starting in September to catch outmigrating silver eels.
- Sampling continues until December, or when no more silver eels are caught.
- All eels are removed from the trap and scanned for PIT tags. A subsample of length and weight measurements are taken.
- Rain events trigger silver eels to migrate.
- To date 5,888 silver eels have been captured.

Number of Silver Eels Caught

Additional Sampling

Ageing otoliths

- Otoliths are sectioned, polished, and stained to count the annuli.
- The average ages of silver eels leaving West Harbor Pond are- males 8 yrs , females 14 yrs.

Average Length of silver eels

- The average lengths of silver eels leaving West Harbor Pond aremales 297 mm, females 443 mm.

Swim Bladder Parasite

- The invasive eel parasite Anguillacoloides crassus is present in eels living in West Harbor Pond.
- Over 50% of the eels sampled are infected with this parasite.

Questions?

American Eel Aquaculture Proposals

American Eel Management Board August 1, 2023

Outline

- Background
- Maine Proposal
- Technical Committee Review
- Questions

Background

- Aquaculture provision established through Addendum IV
- Maintained by Addendum V
- States and jurisdictions can develop Plans for domestic aquaculture
- Under an approved Aquaculture Plan, states and jurisdictions can harvest a maximum of 200 pounds of glass eel per year

Maine Proposal

- Maine has utilized aquaculture quota since 2019

2019	2020	2021	2022	2023
130.5	0	138.91	200	200

- 2023 Summary
- Same harvest locations as previous years, plus new harvests in the Union River, Passagassawakeag River, and St. Croix River
- Increased CPUEs in 2022 and 2023

Maine Proposal

- 2024 Proposal
-No changes in facility or monitoring
-American Unagi requests to harvest full 200 lbs allocation

TC Summary

- ME Proposal: No concerns
- TC recommended approval of the proposal

Questions?

